您现在的位置是:首页 >技术交流 >知识推理——CNN模型总结网站首页技术交流

知识推理——CNN模型总结

missyoudaisy 2024-06-12 06:01:02
简介知识推理——CNN模型总结

记录一下我看过的利用CNN实现知识推理的论文。

最后修改时间:2023.05.08

目录

1.ConvE

1.1.解决的问题

1.2.优势

1.3.贡献与创新点

1.4.方法

1.4.1 为什么用二维卷积,而不是一维卷积?

1.4.2.ConvE具体实现


1.ConvE

论文:Convolutional 2D Knowledge Graph Embeddings

会议/期刊:

1.1.解决的问题

(1)以往的模型都太浅了,虽然可以快速用于大型数据集,但是学到的特征表达能力比较差;

(2)另一个比较严重的问题是数据集的泄露问题“test set leakage”,也就是训练集出现过的关系三元组,取了反后,在测试集中又出现了一遍。比如,(A,妈妈,B)在训练集中出现过,(B,女儿,A)又在测试集中出现。这个问题导致一些很简单的rule-based模型也可以达到很好的效果。

1.2.优势

(1)采用多层神经网络,特征表达能力强;

(2)参数量很少,相同的实验效果,参数量比DistMult少8倍,比R-GCN少17倍;

(3)可以高效建模大型数据集常出现的入度高的节点。

1.3.贡献与创新点

(1)设计2D卷积模型,进行链接预测;

(2)设计1-N scoring步骤,提升训练和评估的速度;

(3)参数量少;

(4)随着知识图谱复杂性的提升,ConvE与一些shallow算法的差距成比例增大;

(5)分析了各数据集泄露的问题,并提出了不泄露的版本;

(6)sota。

1.4.方法

1.4.1 为什么用二维卷积,而不是一维卷积?

       NLP任务中大多采用的是一维卷积,包括下面要提到的ConvKB算法,但是ConvE却创新的使用了二维卷积。因为二维卷积使得嵌入向量间的交互点变多了,模型的表达能力变强。举个栗子~

一维卷积:

两个一维嵌入分别为[a quad a quad a][b quad b quad b],两个嵌入concat后得到向量[a quad a quad a quad b quad b quad b]

一维卷积核大小为3,那么卷积的过程中,两个向量只有连接点处的值(比如[a quad b quad b][a quad a quad b])发生了交互,并且交互程度会随着卷积核大小的增加而变深。

二维卷积:

两个二维嵌入分别为egin{bmatrix} a& a & a\ a& a& a end{bmatrix}egin{bmatrix} b & b & b\ b & b & b end{bmatrix},两个嵌入concat后得到嵌入egin{bmatrix} a & a & a\ a & a & a\ b& b &b \ b& b & b end{bmatrix}

二维卷积核大小为3×3,卷积的过程中,卷积核可以建模concat边界线处的交互,特征交互更多。

换一个模式(将嵌入的几行调换一下位置),得到egin{bmatrix} a & a & a\ b & b & b\ a& a &a \ b& b & b end{bmatrix},那么可以发现交互的点更多了。

1.4.2.ConvE具体实现

        链接预测算法一般由编码模块打分模块构成,编码模块负责得到实体和关系的嵌入向量,打分模块负责为三元组打分。

        ConvE由卷积层全连接层构成。

下面是ConvE的算法流程图

步骤:(可结合上图食用~)

(1)在所有的实体和关系的嵌入矩阵中,查找当前计算的实体和关系的嵌入向量e_{s}r_{r}

(2)对嵌入向量做2D的reshape,得到嵌入矩阵ar{e_{s}}ar{r_{r}},维度从k	imes 1变为k_{w}	imes k_{h}

(3)concat嵌入矩阵ar{e_{s}}ar{r_{r}},并将结果作为卷积的输入,输出cm	imes n的特征图;

(4)将特征图reshape成c	imes m	imes n	imes 1的向量,并利用全连接层将向量映射为k维;

(5)然后将该向量与实体嵌入向量做内积,进行匹配,得到分数。这里涉及到1-N scoring,后面会讲到。

(6)为了训练,对分数进行logistic sigmoid函数计算,得到最终分数p

打分函数:

        f是ReLU激活函数。

损失函数:

        如果三元组存在,t_{i}为1,否则,为0。最小化损失函数。

Dropout:

        作者还使用了很多种dropout手段,包括对嵌入矩阵卷积后的特征图全连接层后的输出进行不同概率的dropout。

1.4.3.1-N scoring

 

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。