您现在的位置是:首页 >技术杂谈 >Java高阶数据结构 & 图 & 图的表示与遍历网站首页技术杂谈

Java高阶数据结构 & 图 & 图的表示与遍历

s:103 2024-06-03 10:56:09
简介Java高阶数据结构 & 图 & 图的表示与遍历

高阶数据结构!

在这里插入图片描述

Java高阶数据结构 & 图的概念 & 图的存储与遍历

1. 图的基本概念

1.1 图的属性

图是由顶点集合及顶点间的关系组成的一种数据结构:

G = (VE)

Graph图,vertex顶点, edge边

  • 其中: 顶点集合V = {x|x属于某个数据对象集}是有穷非空集合;

  • E = {(x,y)|x,y属于V}或者E = {|x,y属于V && Path(x, y)},是顶点间关系的有穷集合,也叫做边的集合。

    • (x, y)表示x到y的一条双向通路,即边(x, y)是无方向的;
    • Path表示从x到y的一条单向通路,即Path(x, y)是有方向的。

顶点和边:

  • 图中结点称为顶点
    • 第i个顶点记作vi。
  • 两个顶点vi和vj相关联称作顶点vi和顶点vj之间有一条边
    • 图中的第k条边记作ek,ek = 无向边(vi,vj)或有向边Path(vi,vj)

1.2 无向图与有向图

  1. 有向图中,顶点对是有序的,顶点对称为顶点x到顶点y的一条边(弧),Path(x, y)和Path(y, x)是两条不同的边,比如下图G3和G4为有向图。
  2. 无向图中,顶点对(x, y)是无序的,顶点对(x,y) 称为顶点x和顶点y相关联的一条边,这条边没有特定方向,Path(x, y)和Path(y, x)是同一条边,比如下图G1和G2为 无向图。

注意:无向边(x, y)等于有向边Path(x, y)和Path(y, x)

在这里插入图片描述

1.3 完全图

在有n个顶点的

  1. 无向图中,n(n - 1) / 2 条边
    • 任何两个顶点都有且仅有一条边
      • 根据排列组合原理,第一个顶点可连接n - 1个顶点,第二个顶点可以连接 n - 2 个顶点······
      • 第n个顶点可连接0个顶点,总和n(n - 1) / 2
    • 【------】
    • 无向完全图,如G1
  2. 有向图中,n(n - 1)条边
    • 任何两个顶点都有且仅有两条方向相反的边
      • n(n - 1) / 2 * 2 = n(n - 1)
    • 【<==>】
    • 有向完全图,如G4

1.4 简单路径和回路

简单路径:路径上的顶点(V1,V2······)均不重复

回路:若路径上的第一个顶点与最后一个顶点重合,即成环回路

在这里插入图片描述

1.5 子图

即图G集合的子集G1 = {V1,E1},则称G1为G的子图

  1. V1包含于V
  2. E1包含于E

在这里插入图片描述

1.6 连通图

无向图中,V1到V2有路径,则称V1和V2连通

  • 如果每对顶点都是连通的,则称此图为连通图

如果此图为有向图,并且每一对顶点Vi到Vj与Vj到Vi都连通,则称为强连通图

完全图就是更加强大的连通图~

在这里插入图片描述

生成树在求最小生成树篇章讲解

2. 图的存储(理论)

2.1 ※邻接矩阵

如果一个图,有n个顶点(V0 ··· Vn-1)

  • 每个顶点都有对应的下标(0 ··· n - 1)

那么邻接矩阵就是个n×n的矩阵

  • 如果顶点Vi到Vj有一条有向边 ---->
    • 直接相连
  • 那么这个矩阵(二维数组)的的i行第j列的元素置为对应的距离(权值)
    • 带权图(不带权图默认为1)
    • 默认值为 ∞(无穷大)

在这里插入图片描述

  • 无向图的一条边是双向的
  • 自己到自己可以是0也可以是默认值∞,最好是∞,这样后面好判断

无向图的邻接矩阵是关于对角线对称的:

在这里插入图片描述

有向图则不一定:

在这里插入图片描述

带权图:

在这里插入图片描述

2.2 邻接链表

邻接表:

  1. 用数组表示顶点的集合
  2. 用链表来表示边的关系

在这里插入图片描述

解析:

  1. A可以到B和C,则A对应的链表存放两个节点 【1->2->null】
  2. B可以到A和D,则B对应的链表存放两个节点 【0->3->null】
  3. C可以到A,则C对应的链表存放一个节点 【0->null】
  4. D可以到B,则D对应的链表存放一个节点 【1->null】

如果是有向图的邻接表,则分为两种

  1. 入边表
  2. 出边表

在这里插入图片描述

  • 那么所有的链表的节点和就是边数
  • 因为一条有向边必然是一个顶点的“出”,另一个顶点的“入”

3. 图的存储(代码表示)

3.1 邻接矩阵

3.1.1 邻接矩阵的基本属性

public class GraphByMatrix{

    // 1. 顶点集合
    private char[] arrayV;

    //2. 邻接矩阵
    private int[][] matrix;//顶点在这里的下标即在字符数组的下标

    //3. 是否是有向图
    private boolean isDirect;
    
}

3.1.2 构造方法和初始化方法

/**
 *
 * @param size 【顶点个数】
 * @param isDirect
 */
public GraphByMatrix(int size, boolean isDirect) {
    this.arrayV = new char[size];
    matrix = new int[size][size];//此时默认都是0
    this.isDirect = isDirect;

    //将邻接矩阵默认值改为【∞】
    for (int i = 0; i < size; i++) {
        Arrays.fill(matrix[i], Integer.MAX_VALUE);
        //fill,让数组充满【∞】这个值
    }
}
public void initArrayV(char[] array) {
    for (int i = 0; i < array.length; i++) {
        arrayV[i] = array[i];
    }
}
  1. 构造方法
    • 传入size,即顶点的个数 ==> arrayV的大小
    • 传入isDirect,即确认是有向图或者无向图
    • 将邻接矩阵的默认值改为无穷大
  2. 初始化顶点集合
    • 传入字符数组,挨个赋值

测试:

public static void main(String[] args) {
    char[] chars = {'A', 'B', 'C', 'D'};

    GraphByMatrix graph = new GraphByMatrix(chars.length, true);
    graph.initArrayV(chars);
    System.out.println();

}

在这里插入图片描述

3.1.3 获取顶点字符在顶点集合中的下标

这个方法获得的下标,也代表该顶点在邻接矩阵的下标

  • 可以用哈希表去存储顶点们,这里不是~
  • 所以我用的是遍历数组的方法
//获得顶点对应下标
public int getIndexOfV(char v) {
    for (int i = 0; i < arrayV.length; i++) {
        if(v == arrayV[i]) {
            return i;
        }
    }
    return -1;
}

3.1.4 增加边

  1. 参数左指向参数右的有向边
  2. 如果是无向图,默认参数右也指向参数左
/**
 * 添加边
 * @param v1 起始顶点
 * @param v2 目的顶点
 * @param weight 权值
 */
public void addEdge(char v1, char v2, int weight) {
    int index1 = getIndexOfV(v1);
    int index2 = getIndexOfV(v2);
    if(index1 != -1 && index2 != -1 && index1 != index2) {
        matrix[index1][index2] = weight;
        //index1 --> index2
        if(!isDirect) {//无向图
            matrix[index2][index1] = weight;
        }
    }
}

测试:

    public static void main(String[] args) {
        char[] chars = {'A', 'B', 'C', 'D'};

        GraphByMatrix graph = new GraphByMatrix(chars.length, true);
        graph.initArrayV(chars);

        graph.addEdge('A', 'B', 1);
        graph.addEdge('A', 'D', 1);
        graph.addEdge('B', 'A', 1);
        graph.addEdge('B', 'C', 1);
        graph.addEdge('C', 'B', 1);
        graph.addEdge('C', 'D', 1);
        graph.addEdge('D', 'A', 1);
        graph.addEdge('D', 'C', 1);
        System.out.println();

    }
}

在这里插入图片描述

对比:

在这里插入图片描述

3.1.5 打印邻接矩阵

//打印邻接矩阵
public void printGraph() {
    System.out.print("   ");
    for (int i = 0; i < arrayV.length; i++) {
        System.out.print("[" + arrayV[i] + "]");
    }
    System.out.println();
    for (int i = 0; i < matrix.length; i++) {
        System.out.print("[" + arrayV[i] + "]");
        for (int j = 0; j < matrix[0].length; j++) {
            if(matrix[i][j] == Integer.MAX_VALUE) {
                System.out.print(" ∞ ");
            }else {
                System.out.print(" " + matrix[i][j] + " ");
            }
        }
        System.out.println();
    }
}

测试:

graph.printGraph();

在这里插入图片描述

3.1.6 获得顶点的度

什么是顶点的度?

  1. 有向图,入顶点和出顶点的边数和
  2. 无向图,与顶点相连的边的数量

则对于无向图,只需要遍历一行就行,但是对于有向图,还需要遍历对应列

//获得顶点的度
public int getDevOfV(char v) {
    int indexV = getIndexOfV(v);
    int count = 0;
    //无论如何,都要遍历对于行
    for (int i = 0; i < matrix[0].length; i++) {
        if(matrix[indexV][i] != Integer.MAX_VALUE) {
            count++;
        }
    }
    //如果是有向图,则遍历对于列
    if(isDirect) {
        for (int i = 0; i < matrix.length; i++) {
            if(matrix[i][indexV] != Integer.MAX_VALUE) {
                count++;
            }
        }
    }
    return count;
}

测试:

if(graph.isDirect) {
    System.out.println("有向图:");
}else {
    System.out.println("无向图:");
}
System.out.println("A节点的度:" + graph.getDevOfV('A'));
System.out.println("B节点的度:" + graph.getDevOfV('B'));
System.out.println("C节点的度:" + graph.getDevOfV('C'));
System.out.println("D节点的度:" + graph.getDevOfV('D'));

在这里插入图片描述

3.2 邻接链表

3.2.1 邻接链表的基本属性

public class GraphByList {

    static class Node {
        public int src;//起始下标
        public int dest;//目的下标
        public int weigh;//权值
        public Node next;//后继

        public Node(int src, int dest, int weigh) {
            this.src = src;
            this.dest = dest;
            this.weigh = weigh;
        }
    }

    public char[] arrayV;//顶点集合
    public ArrayList<Node> edgeList;//边的集合
    public boolean isDirect;//是否是有向图
}
  1. 定义内部类节点Node
  2. 顶点集合arrayV
  3. 边集合edgeList
    • 也可以用数组
  4. 标识符isDirect去区分有向图和无向图

如果是

  • 出边邻接表,边集合中第i条链表上的节点的src成员都是i值
  • 入边邻接表,边集合中第i条链表上的节点的dest成员都是i值

3.2.2 构造方法和初始化方法

public GraphByList(int size, boolean isDirect) {
    this.arrayV = new char[size];
    edgeList = new ArrayList<>(size);
    //不带参数的话,默认大小为0
    //并且,这只是他的容量是size
    for (int i = 0; i < size; i++) {
        edgeList.add(null);
    }
    this.isDirect = isDirect;
}

//初始化顶点数组
public void initArrayV(char[] chars) {
    for (int i = 0; i < arrayV.length; i++) {
        arrayV[i] = chars[i];
    }
}
  1. 构造方法
    • 传入size,顶点集合和边集合的大小
    • 传入isDirect,确定有向或者无向
  2. 初始化方法
    • 对顶点集合挨个赋值

3.2.3 获取顶点字符在顶点集合的下标

这里获得的下标,就是该顶点在边集合里对应的下标

  • 依旧使用的是遍历数组的方法
//获得顶点对应下标
public int getIndexOfV(char v) {
    for (int i = 0; i < arrayV.length; i++) {
        if(v == arrayV[i]) {
            return i;
        }
    }
    return -1;
}

3.2.4 添加边

  1. 参数左指向参数右的有向边
    • 这是出边表,入边表相反,本文章只写出边表
  2. 如果是无向图,默认参数右也指向参数左

注意:重复输入同一条有向边,一定要排除

/**
 * 添加边
 * 这里写的是【出边表】
 * 【入边表】就是倒过来
 * @param v1 起始顶点
 * @param v2 目的顶点
 * @param weight 权值
 */
public void addEdge(char v1, char v2, int weight) {
    int index1 = getIndexOfV(v1);
    int index2 = getIndexOfV(v2);
    if(index1 != -1 && index2 != -1 && index1 != index2) {
        Node cur = edgeList.get(index1);
        
        //判断是否存在此边
        while(cur != null) {
            if(cur.dest == index2) {
                System.out.println("存在此边");
                return;
            }
            cur = cur.next;
        }
        Node newOne = new Node(index1, index2, weight);
        //【index1 --> index2】
        //头插法插入节点
        newOne.next = edgeList.get(index1);
        edgeList.set(index1, newOne);

        //如果是无向图,相反的边也一并添加
        //如果是无向图,添加操作是联动的,所以上面判断不存在此边
        //此时不用判断
        if(!isDirect) {
            Node node = new Node(index2, index1, weight);
            //【index2 --> index1】
            node.next = edgeList.get(index2);
            edgeList.set(index2, node);
        }
    }

}

测试:

public static void main(String[] args) {
    char[] chars = {'A', 'B', 'C', 'D'};

    GraphByList graph = new GraphByList(chars.length, true);
    graph.initArrayV(chars);
    graph.addEdge('A', 'B', 1);
    graph.addEdge('A', 'D', 1);
    graph.addEdge('B', 'A', 1);
    graph.addEdge('B', 'C', 1);
    graph.addEdge('C', 'B', 1);
    graph.addEdge('C', 'D', 1);
    graph.addEdge('D', 'A', 1);
    graph.addEdge('D', 'C', 1);
    System.out.println();
}

在这里插入图片描述

3.2.5 打印的邻接链表

//打印邻接表
public void printGraph() {
    for (int i = 0; i < edgeList.size(); i++) {
        Node cur = edgeList.get(i);
        while(cur != null) {
            int index1 = cur.src;
            int index2 = cur.dest;
            System.out.print("[" + arrayV[index1] + "->" + arrayV[index2] + "]");
            cur = cur.next;
        }
        System.out.println();
    }
}
  1. 获取对应下标的链表
  2. 遍历链表

测试:

graph.printGraph();

在这里插入图片描述

3.2.6 获得顶点的度

  1. 有向图,入顶点和出顶点的边数和
  2. 无向图,与顶点相连的边的数量

对应邻接链表

  1. 有向图:
    • 入边表的对应链表的长度 + 出边表对应链表的长度
    • 但是我们的表是出边表,所以要遍历其他下标的链表,获得入边的数量
  2. 无向图:
    • 对应链表的长度,就是度数~

注意:入边表和出边表只要一种就可以完整的图了,并不是入边表和出边表结合去代表!

//获得顶点的度
public int getDevOfV(char v) {
    int index = getIndexOfV(v);
    int count = 0;
    if(index != -1) {
        Node cur = edgeList.get(index);
        while(cur != null) {
            count++;
            cur = cur.next;
        }
        //如果是有向图
        if(isDirect) {
            int dest = index;
            for (int src = 0; src < edgeList.size(); src++) {
                if(src != dest) {//src == dest 肯定不存在没必要进入
                    Node cur = edgeList.get(src);
                    while(cur != null) {
                        if(cur.dest == dest) {
                            count++;
                        }
                        cur = cur.next;
                    }
                }
            }
        }
    }
    return count;
}

测试:

System.out.println("A节点的度:" + graph.getDevOfV('A'));
System.out.println("B节点的度:" + graph.getDevOfV('B'));
System.out.println("C节点的度:" + graph.getDevOfV('C'));
System.out.println("D节点的度:" + graph.getDevOfV('D'));

在这里插入图片描述

4. 图的遍历

这里只讲解邻接矩阵的遍历代码~

  • 感兴趣的同学可以去研究一下邻接表的遍历

这里用到的邻接矩阵的图对象就是上面定义的!

4.1 广度优先的遍历

  • 类似于树的层序遍历
    • 树就是特殊的图罢了
  • 优先打印此顶点直接相连的所有顶点

在这里插入图片描述

算法设计一样也是非递归,利用队列

  • 打印过的不用再打印,所以需要一个数组来标记每个顶点的是否被打印过
    • 否则会死循环

Breadth First Search,广度优先遍历

//广度优先遍历
public void bfs(char v) {
    //标记数组
    boolean[] isVisited = new boolean[arrayV.length];

    //定义一个队列
    Queue<Integer> queue = new LinkedList<>();
    //获取起始顶点的下标
    int index = getIndexOfV(v);
    if(index == -1) {
        return;
    }
    queue.offer(index);
    while(!queue.isEmpty()) {
        int top = queue.poll();
        isVisited[top] = true;
        System.out.print(arrayV[top] + " ");
        for (int i = 0; i < arrayV.length; i++) {
            if(!isVisited[i] && matrix[top][i] != Integer.MAX_VALUE) {
                queue.offer(i);
                isVisited[i] = true;//不置为true,会导致D打印两次
            }
        }
    }
}

在这里插入图片描述

可能有人用count,去计算打印了多少个顶点,打印到对应数量就出循环

  • 发现入队列的时候不置为true也能正确~
  • 这只是巧合!更复杂的图就不会这么巧了,会因为你重复打印而误判为已全部打印

测试:

graph.bfs('B');

在这里插入图片描述

4.2 深度优先的遍历

  • 类似于树的先序遍历
    • 树就是特殊的图罢了
  • 尽可能的深入到与实时顶点相连的顶点,直到实时顶点不能再深入到未打印的顶点,再回溯

在这里插入图片描述

Depth First Search,深度优先遍历

算法设计,一样可以递归也可以非递归(栈)

这里这写递归的写法~

打印过的不用再打印,所以需要一个数组来标记每个顶点的是否被打印过

  • 否则会死递归
//深度优先遍历
public void dfs(char v) {
    boolean[] isVisited = new boolean[arrayV.length];
    int src = getIndexOfV(v);
    dfsOrder(src, isVisited);
}
//递归方法
private void dfsOrder(int src, boolean[] isVisited) {
    System.out.print(arrayV[src] + " ");
    isVisited[src] = true;
    for (int i = 0; i < matrix[src].length; i++) {
        if(!isVisited[i] && matrix[src][i] != Integer.MAX_VALUE) {
            dfsOrder(i, isVisited);
        }
    }
}

用树/递归的整体化思想就能解决了,我们是类似先序遍历,先打印顶点的~

在这里插入图片描述

  • 不一样的是,这里的递归出口就是顶点无法继续深入到未打印的顶点

有人会问了,这里需要进入递归前就置为true吗,跟刚才那个一样

答:不用

  • 因为递归不像刚才那个,刚才那个打印是延时打印的,也就是说放在队列里面,慢慢按顺序打印
  • 所以
    • bfs时,会出现延时打印而重复入队的现象。
    • dfs则不一样,没有延时打印,一进递归就打印和更新,下次要进递归之前会判断该下标是否被打印过

测试:

graph.dfs('B');

在这里插入图片描述


文章到此结束!谢谢观看
可以叫我 小马,我可能写的不好或者有错误,但是一起加油鸭?

本章节讲解了图的基本知识,

后续会更新获取最小生成树和最短路径的方法的文章

敬请期待!


风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。