您现在的位置是:首页 >学无止境 >算法记录 | Day46 动态规划网站首页学无止境

算法记录 | Day46 动态规划

是菜鸡小小陈啊 2023-07-01 04:00:02
简介算法记录 | Day46 动态规划

139.单词拆分

思路:

1.确定dp数组以及下标的含义

dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词

2.确定递推公式

  • 如果 s[0: j] 可以拆分为单词(即 dp[j] == True),并且字符串 s[j: i] 出现在字典中,则 dp[i] = True
  • 如果 s[0: j] 不可以拆分为单词(即 dp[j] == False),或者字符串 s[j: i] 没有出现在字典中,则 dp[i] = False

3.dp数组如何初始化:

  • 长度为 0 的字符串 s[0: i] 可以拆分为单词,即 dp[0] = True

4.确定遍历顺序:题目中说是拆分为一个或多个在字典中出现的单词,所以这是完全背包。本题其实求的是排列数。 先遍背包,再遍历物品。

5举例推导dp[i]:

以输入: s = “leetcode”, wordDict = [“leet”, “code”]为例,dp状态如图:

139.单词拆分

class Solution:
    def wordBreak(self, s: str, wordDict: List[str]) -> bool:
        size = len(s)
        dp = [False for _ in range(size + 1)]
        dp[0] = True
        for i in range(size + 1):
            for j in range(i):
                if dp[j] and s[j: i] in wordDict:
                    dp[i] = True
        return dp[size]

多重背包

多重背包问题:有 n 种物品和一个最多能装重量为 W的背包,第 i种物品的重量为weight[i],价值为value[i],件数为count[i]。请问在总重量不超过背包载重上限的情况下,能装入背包的最大价值是多少?

img

03.背包问题知识(三) | 算法通关手册 (itcharge.cn)

1.确定dp数组以及下标的含义定义状态:dp[w]将物品装入最多能装重量为w的背包中,可以获得的最大价值。

2.状态转移方程:dp[w]=max{dp[w-kxweight[i-1]]+kxvalue[]i-1}

3.初始条件:无论背包载重上限为多少,只要不选择物品,可以获得的最大价值一定是 0,即 ,dp[w]=0,

class Solution: 
    # 思路 2:动态规划 + 滚动数组优化
    def multiplePackMethod2(self, weight: [int], value: [int], count: [int], W: int):
        size = len(weight)
        dp = [0 for _ in range(W + 1)]
        
        # 枚举前 i 种物品
        for i in range(1, size + 1):
            # 逆序枚举背包装载重量(避免状态值错误)
            for w in range(W, weight[i - 1] - 1, -1):
                # 枚举第 i - 1 种物品能取个数
                for k in range(min(count[i - 1], w // weight[i - 1]) + 1):
                    # dp[w] 取所有 dp[w - k * weight[i - 1]] + k * value[i - 1] 中最大值
                    dp[w] = max(dp[w], dp[w - k * weight[i - 1]] + k * value[i - 1])
                
        return dp[W]

背包问题总结

416.分割等和子集1

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

背包递推公式

问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]); ,对应题目如下:

问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); ,对应题目如下:

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); ,对应题目如下:

遍历顺序

01背包

二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。

一维dp数组的背包在遍历顺序上和二维dp数组实现的01背包其实是有很大差异的,大家需要注意!

完全背包

纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

相关题目如下:

如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下:

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。