您现在的位置是:首页 >学无止境 >P5:运动鞋识别网站首页学无止境
P5:运动鞋识别
简介P5:运动鞋识别
🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍦 参考文章:Pytorch实战 | 第P5周:运动鞋识别
🍖 原作者:K同学啊|接辅导、项目定制
Z、心得体会:
- 本节的重点是:如何使用动态学习率
- 可以定义设置动态学习率函数,加载到optimizer里面
- 官方动态学习率接口如下:
(1) lambda1 = lambda epoch: (0.92 ** (epoch // 20)) #第二组参数的调整方法
(2)optimizer = torch.optim.SGD(model.parameters(), lr = learn_rate)
(3)scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #optimizer是之前定义好的优化器名称;选定调整方法
PS: 最后使用scheduler.step()调用官方动态学习率
一、前期准备
1. 设置GPU
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device
device(type='cuda')
2. 导入数据
import os, PIL, random, pathlib
data_dir = 'C:/Users/Dell/Desktop/ML-K/P5/data/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split('\')[-1] for path in data_paths]
classeNames
['test', 'train']
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), #将图片resize成统一尺寸
transforms.ToTensor(), #将PIL Image或numpy.ndarray转换成tensor,并归一化到[0, 1]之间
transforms.Normalize( #标准化处理,使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) #其中mean和std是从数据集中随机抽样计算得到的
])
test_transforms = transforms.Compose([
transforms.Resize([224, 224]), #将图片resize成统一尺寸
transforms.ToTensor(), #将PIL Image或numpy.ndarray转换成tensor,并归一化到[0, 1]之间
transforms.Normalize( #标准化处理,使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) #其中mean和std是从数据集中随机抽样计算得到的
])
train_dataset = datasets.ImageFolder('C:/Users/Dell/Desktop/ML-K/P5/data/train/', transform = train_transforms)
test_dataset = datasets.ImageFolder('C:/Users/Dell/Desktop/ML-K/P5/data/test/', transform = train_transforms)
train_dataset.class_to_idx
{'adidas': 0, 'nike': 1}
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
for X, y in test_dl:
print('shape of X [N, C, H, W]: ', X.shape)
print('shape of y: ', y.shape, y.dtype)
break
shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])
shape of y: torch.Size([32]) torch.int64
二、构建简单的CNN网络
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 12, kernel_size=5, padding = 0),
nn.BatchNorm2d(12),
nn.ReLU())
self.conv2 = nn.Sequential(
nn.Conv2d(12, 12, kernel_size=5, padding = 0),
nn.BatchNorm2d(12),
nn.ReLU())
self.pool3 = nn.Sequential(
nn.MaxPool2d(2))
self.conv4 = nn.Sequential(
nn.Conv2d(12, 24, kernel_size=5, padding = 0),
nn.BatchNorm2d(24),
nn.ReLU())
self.conv5 = nn.Sequential(
nn.Conv2d(24, 24, kernel_size=5, padding = 0),
nn.BatchNorm2d(24),
nn.ReLU())
self.pool6 = nn.Sequential(
nn.MaxPool2d(2))
self.dropout = nn.Sequential(
nn.Dropout(0.2))
self.fc = nn.Sequential(
nn.Linear(24*50*50, len(classeNames)))
def forward(self, x):
batch_size = x.size(0)
x = self.conv1(x)
x = self.conv2(x)
x = self.pool3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.pool6(x)
x = self.dropout(x)
x = x.view(batch_size, -1) # flatten变成全连接网络需要的输入(batch, 24*50*50) 变为(batch, -1), -1此处自动计算出的是24*50*50
x = self.fc(x)
return x
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} device'.format(device))
model = Model().to(device)
model
Using cuda device
Model(
(conv1): Sequential(
(0): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
(1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv2): Sequential(
(0): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
(1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(pool3): Sequential(
(0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(conv4): Sequential(
(0): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
(1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(conv5): Sequential(
(0): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
(1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
)
(pool6): Sequential(
(0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(dropout): Sequential(
(0): Dropout(p=0.2, inplace=False)
)
(fc): Sequential(
(0): Linear(in_features=60000, out_features=2, bias=True)
)
)
三、训练模型
1. 编写训练函数
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
num_batches = len(dataloader)
train_loss, train_acc = 0, 0
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
loss = loss_fn(pred, y)
#反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
2. 编写测试函数
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, test_acc = 0, 0
#当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_loss += loss.item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
3. 设置动态学习率
#设置动态学习率
def adjust_learning_rate(optimizer, epoch, start_lr):
#每两个epoch衰减到原来的0.98
lr = start_lr * (0.98 ** (epoch // 2)) # //的意思是相除后向下取整
for param_group in optimizer.param_groups:
param_group['lr'] = lr
learn_rate = 1e-4
optimizer = torch.optim.SGD(model.parameters(), lr = learn_rate)
#官方的动态学习率接口使用:
lambda1 = lambda epoch: (0.92 ** (epoch // 20))
optimizer = torch.optim.SGD(model.parameters(), lr = learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
4. 正式训练
loss_fn = nn.CrossEntropyLoss() #创建损失函数
epochs = 40
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
#更新学习率
adjust_learning_rate(optimizer, epoch, learn_rate)
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
# scheduler.step() #更新学习率(调用官方动态学习率接口时使用)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
#获取当前的学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']
template = ('Epoch: {:2d}. Train_acc: {:.1f}%, Train_loss: {:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr: {:.2E}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))
print('Done')
loss_fn = nn.CrossEntropyLoss() #创建损失函数
epochs = 40
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
#更新学习率
adjust_learning_rate(optimizer, epoch, learn_rate)
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
# scheduler.step() #更新学习率(调用官方动态学习率接口时使用)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
#获取当前的学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']
template = ('Epoch: {:2d}. Train_acc: {:.1f}%, Train_loss: {:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr: {:.2E}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))
print('Done')
四、结果可视化
1. Loss和Accuracy图
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
plt.rcParams['figure.dpi'] = 100
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
2. 指定图片进行预测
from PIL import Image
classes = list(train_dataset.class_to_idx)
def predict_one_image(image_path, model, transform, classes):
test_img = Image.open(image_path).convert('RGB')
plt.imshow(test_img) #展示图片
test_img = transform(test_img)
img = test_img.to(device).unsqueeze(0)
model.eval()
output = model(img)
_,pred = torch.max(output, 1)
pred_class = classes[pred]
print(f'预测结果是:{pred_class}')
predict_one_image(image_path='C:/Users/Dell/Desktop/ML-K/P5/data/test/adidas/1.jpg',
model = model,
transform = train_transforms,
classes = classes)
预测结果是:adidas
五、保存并加载模型
PATH = './model.pth' #保存的参数文件名
torch.save(model.state_dict(), PATH)
model.load_state_dict(torch.load(PATH, map_location=device))
<All keys matched successfully>
风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。