您现在的位置是:首页 >技术交流 >【数据结构】哈希应用网站首页技术交流

【数据结构】哈希应用

世间是否此山最高 2024-09-24 00:01:04
简介【数据结构】哈希应用

目录

一、位图

1、位图概念

2、位图实现

2.1、位图结构

2.2、比特位置1

2.3、比特位置0

2.4、检测位图中比特位

3、位图例题

3.1、找到只出现一次的整数

3.2、找到两个文件交集

3.3、找到出现次数不超过2次的所有整数

二、布隆过滤器

1、布隆过滤器提出

2、布隆过滤器概念

3、布隆过滤器实现

3.1、布隆过滤器的插入

3.2、布隆过滤器的查找

3.3、布隆过滤器删除

4、布隆过滤器例题

4.1、找到两个存贮query的文件的交集

4.2、哈希切割


一、位图

1、位图概念

 所谓位图,就是用每一个比特位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的。

位图的优点:

  • 速度快
  • 节省空间

位图的缺点:

  • 只能映射整型 ,其他类型如:浮点数、string等等不能存储映射。

2、位图实现

2.1、位图结构

位图类的结构如下:

template<size_t N>
class bitset
{
public:
	bitset()
	{
		_bits.resize(N / 8 + 1, 0);
	}

    //将某个比特位置1
	void set(size_t x)
	{}
    
    //将某个比特位置0
	void reset(size_t x)
	{}

    //检查位图中某个比特位是否为1
    bool test(size_t x)
    {}

private:
	vector<char> _bits;
};

2.2、比特位置1

实现代码:

	void set(size_t x)
	{
		size_t i = x / 8;
		size_t j = x % 8;

		_bits[i] |= (1 << j);
	}

 用除法计算 x 映射的位在数组的第 i char 类型内。 用取模计算 x 映射的位在第 i char 类型的第 j 个比特位。然后用按位或运算把指定比特位置1。

 需要注意的是在进行按位或运算时,使用的是 1 左移 j 位,而不是右移。这是因为在我们人类的主观认识上,数位的排列是下面这样的:

 但实际上,在计算机的虚拟层储存逻辑上,数位的保存是这样的:

 我们所说的左移与右移,并不是向左移动或者向右移动,而是向高位移动与向低位移动。因此为了找到目标位置,需要使用左移,而不是右移。

2.3、比特位置0

实现代码:

	void reset()
	{
		size_t i = x / 8;
		size_t j = x % 8;

		_bits[i] &= ~(1 << j);
	}

 用除法计算 x 映射的位在数组的第 i char 类型内。 用取模计算 x 映射的位在第 i char 类型的第 j 个比特位。然后用按位非与运算把指定比特位置1。

2.4、检测位图中比特位

实现代码:

	bool test(size_t x)
	{
		size_t i = x / 8;
		size_t j = x % 8;

		return _bits[i] & (1 << j);
	}

3、位图例题

3.1、找到只出现一次的整数

设置状态:出现 0 次,状态是 00 。出现 1 次,状态是 01 。出现 2 次及以上,状态是 10 。

template<size_t N>
class twobitset
{
public:
	void set(size_t x)
	{
		// 00->01
		if (_bs1.test(x) == false
			&& _bs2.test(x) == false)
		{
			_bs2.set(x);
		}

		// 01->10
		else if (_bs1.test(x) == false
			&& _bs2.test(x) == true)
		{
			_bs1.set(x);
			_bs2.reset(x);
		}

		//10
	}

	void Print()
	{
		for (size_t i = 0; i < N; ++i)
		{
			if (_bs2.test(i))
			{
				cout << i << endl;
			}
		}
	}
public:
	bitset<N> _bs1;
	bitset<N> _bs2;
};

测试结果如下: 

3.2、找到两个文件交集

 方法一:把其中一个文件的值读取到位图中,再读取另一个文件,判断在不在上面的位图中,在就是交集,取出该值,并把对应位图置0。

 方法二:创建两个位图,读取文件1的数据映射到位图1,读取文件2的数据映射到位图2。然后让位图1与位图2按位与。最终结果是交集。

3.3、找到出现次数不超过2次的所有整数

 设置状态:出现 0 次,状态是 00 。出现 1 次,状态是 01 。出现 2 次,状态是 10 。出现 3 次及以上,状态是 11 。

实现代码与 3.1 中类似。

二、布隆过滤器

1、布隆过滤器提出

 我们在使用新闻客户端看新闻时,它会给我们不停地推荐新的内容,它每次推荐时要去重,去掉那些已经看过的内容。问题来了,新闻客户端推荐系统如何实现推送去重的? 用服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉那些已经存在的记录。 如何快速查找呢?

  1.  用哈希表存储用户记录,缺点:浪费空间。
  2.  用位图存储用户记录,缺点:位图一般只能处理整形,如果内容编号是字符串,就无法处理了。
  3.  将哈希与位图结合,即布隆过滤器。

2、布隆过滤器概念

 布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。

 布隆过滤器可以降低冲突的概率。一个值映射到一个位置,容易误判,映射到多个位置,就可以降低误判率。

布隆过滤器的优点:

  • 增加和查询元素的时间复杂度为:O(K), (K为哈希函数的个数,一般比较小),与数据量大小无关。
  • 哈希函数相互之间没有关系,方便硬件并行运算。
  • 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势。
  • 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势。
  • 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能。
  • 使用同一组散列函数的布隆过滤器可以进行交、并、差运算。

 布隆过滤器的缺点:

  • 有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再建立一个白名单,存储可能会误判的数据)。
  • 不能获取元素本身。
  • 一般情况下不能从布隆过滤器中删除元素。
  • 如果采用计数方式删除,可能会存在计数回绕问题。

3、布隆过滤器实现

3.1、布隆过滤器的插入

 向布隆过滤器中插入:"baidu":

 向布隆过滤器中插入:"tencent": 

 

 实现代码:

struct BKDRHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 0;
		for (auto ch : s)
		{
			hash += ch;
			hash *= 31;
		}
		return hash;
	}
};

struct DJBHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 5381;
		for (auto ch : s)
		{
			hash += (hash << 5) + ch;
		}
		return hash;
	}
};

struct APHash
{
	size_t operator()(const string& s)
	{
		size_t hash = 0;
		for (long i = 0; i < s.size(); i++)
		{
			if ((i & 1) == 0)
			{
				hash ^= ((hash << 7) ^ s[i] ^ (hash >> 3));
			}
			else
			{
				hash ^= (~((hash << 11) ^ s[i] ^ (hash >> 5)));
			}
		}
		return hash;
	}
};

template<size_t N, class K = string, class Hash1 = BKDRHash, class Hash2 = APHash, class Hash3 = DJBHash>
class BloomFilter
{
public:
	void set(const K& key)
	{
		size_t len = N * _X;

		size_t hash1 = Hash1()(key) % len;
		_bs.set(hash1);

		size_t hash2 = Hash2()(key) % len;
		_bs.set(hash2);

		size_t hash3 = Hash3()(key) % len;
		_bs.set(hash3);
	}
private:
	static const size_t _X = 4; // 布隆过滤器的长度与数据数量的倍数关系
	bitset<N*_X> _bs;  //这样可以有效的减少不同数据间的冲突
};

3.2、布隆过滤器的查找

 布隆过滤器的思想是将一个元素用多个哈希函数映射到一个位图中,因此被映射到的位置的比特位一定为1。所以可以按照以下方式进行查找:分别计算每个哈希值对应的比特位置存储的是否为零,只要有一个为零,代表该元素一定不在哈希表中,否则可能在哈希表中。

实现代码:

bool test(const K& key)
{
	size_t len = N * _X;

	size_t hash1 = Hash1()(key) % len;
	if (!_bs.test(hash1))
		return false;

	size_t hash2 = Hash2()(key) % len;
	if (!_bs.test(hash2))
		return false;

	size_t hash3 = Hash3()(key) % len;
	if (!_bs.test(hash3))
		return false;

	return true;

	//依然存在误判,有可能把不在的判断成在
}

 需要注意的是,即使使用了三个哈希函数进行判断,仍然存在误判的可能性。如果判断该数据不存在,则该数据一定不存在。如果判断该数据存在,则该数据有一定的可能性其实不存在。

 因此,布隆过滤器只能运用于能够容忍误判的场景,比如视频推送等等。而对于一些不容忍误判的场景下,布隆过滤器也有相应的解决方法:如果判断出数据存在,就到数据库中进行二次确认,依然存在就返回存在,不存在就返回不存在。

 哈希函数个数,代表一个值映射几个位,哈希函数越多,误判率越低,但是哈希函数越多,平均占的空间就越大。

3.3、布隆过滤器删除

布隆过滤器不能直接支持删除工作,因为在删除一个元素时,可能会影响其他元素。

  一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出的哈希地址)加一,删除元素时,给k个计数器减一,通过多占用几倍存储空间的代价来增加删除操作。

缺陷:

  1. 无法确认元素是否真正在布隆过滤器中。
  2. 存在计数回绕。

4、布隆过滤器例题

4.1、找到两个存贮query的文件的交集

使用哈希切分,把一个大文件分割成多个小文件,再让小文件之间取交集:

 使用这种方法,因为不是平均切分,可能会出现冲突多,某一个Ai、Bi小文件过大的问题。出现这种问题无非两种情况:

  1. 单个文件中,有某个大量重复的query。
  2. 单个文件中,有大量不同的query。

可以直接使用一个unordered_set/set,依次读取文件query,插入set中:

  1. 如果读取了整个小文件的query,都可以成功插入set,说明是情况一。
  2. 如果读取了整个小文件的query,插入过程中出现抛异常,说明是情况二。换成其他哈希函数,再次分割,再求交集。

说明:set插入key,如果已经有了,返回false。如果内存用完了就会抛bad_alloc异常,剩下的都会成功。

4.2、哈希切割

 给一个超过100G大小的log file,log中存着IP地址,设计算法找到出现次数最多的IP地址。

依然使用哈希切割的方法:

 依次处理每一个小文件,使用unordered_map 或 map 统计ip出现的次数。

  1.  如果统计过程中,没有抛异常则正常统计。统计完一个小文件,记录最多的那一个。clear内存,再统计下一个小文件。
  2.  如果统计过程中,出现抛异常现象,说明单个文件过大,冲突太多。换成其他哈希函数,再次分割。

 建立一个k个数据的小堆,每统计一次,就插入小堆,转换成topK问题,最终可以解决。

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。