您现在的位置是:首页 >其他 >Hadoop之HDFS概述网站首页其他

Hadoop之HDFS概述

yanghaoplus 2024-08-19 12:01:02
简介Hadoop之HDFS概述

端口名称Hadoop2.xHadoop3.x
NameNode内部通信端口8020/9000
NameNode HTTP UI500709870
MapReduce查看执行任务端口80888088
历史服务器通信端口1988819888

HDFS架构概述

Hadoop Distributed File System,简称HDFS,是一个分布式文件系统。

随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种。

HDFS的使用场景:适合一次写入,多次读出的场景。一个文件经过创建、写入和关闭之后就不需要改变。

优缺点

优点
1)高容错性

数据自动保存多个副本。它通过增加副本的形式,提高容错性。
2)适合处理大数据

数据规模:能够处理数据规模达到GB、TB、甚至PB级别的数据;
文件规模:能够处理百万规模以上的文件数量,数量相当之大。
3)可构建在廉价机器上,通过多副本机制,提高可靠性。

缺点
1)不适合低延时数据访问,比如毫秒级的存储数据,是做不到的。

2)无法高效的对大量小文件进行存储。

存储大量小文件的话,它会占用NameNode大量的内存来存储文件目录和块信息。这样是不可取的,因为NameNode的内存总是有限的;
小文件存储的寻址时间会超过读取时间,它违反了HDFS的设计目标。
3)不支持并发写入、文件随机修改。

一个文件只能有一个写,不允许多个线程同时写;
仅支持数据append(追加),不支持文件的随机修改。

HDFS架构

在这里插入图片描述

包含以下三个组件:

1)NameNode(nn):就是Master,它是一个主管、管理者。

(1)管理HDFS的名称空间;

(2)配置副本策略;

(3)管理数据块(Block)映射信息;

(4)处理客户端读写请求。

2)DataNode:就是Slave。NameNode下达命令,DataNode执行实际的操作。

(1)存储实际的数据块;

(2)执行数据块的读/写操作。

3)Client:就是客户端。

(1)文件切分。文件上传HDFS的时候,Client将文件切分成一个一个的Block,然后进行上传;

(2)与NameNode交互,获取文件的位置信息;

(3)与DataNode交互,读取或者写入数据;

(4)Client提供一些命令来管理HDFS,比如NameNode格式化;

(5)Client可以通过一些命令来访问HDFS,比如对HDFS增删查改操作;

4)Secondary NameNode:并非NameNode的热备。当NameNode挂掉的时候,它并不能马上替换NameNode并提供服务。

(1)辅助NameNode,分担其工作量,比如定期合并Fsimage和Edits,并推送给NameNode ;

(2)在紧急情况下,可辅助恢复NameNode。

HDFS文件块大小

HDFS中的文件在物理上是分块存储(Block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在Hadoop2.x/3.x版本中是128M,1.x版本中是64M。

思考:为什么块的大小不能设置太小,也不能设置太大?
(1)HDFS的块设置太小,会增加寻址时间,程序一直在找块的开始位置;(2)如果块设置的太大,从磁盘传输数据的时间会明显大于定位这个块开始位置所需的时间。导致程序在处理这块数据时,会非常慢。
总结:HDFS块的大小设置主要取决于磁盘传输速率。

HDFS的shell命令

HDFS shell命令基本以hadoop fs开头,输入hadoop fs会看到对应指令和说明

hadoop fs #查看指令说明

下面几个例子可以看出,基本和linux上的命令相似

hadoop fs -mkdir /mydir #创建文件夹
hadoop fs -ls /mydir #查看目录信息
hadoop fs -put ./demo.txt /mydir #上传文件到hdfs上
hadoop fs -get /mydir /demo.txt ./demo.txt #下载hdfs文件到本地
hadoop fs  -chmod 666  /mydir /demo.txt #修改文件权限

HDFS读写流程

写数据流程

在这里插入图片描述
(1)客户端通过Distributed FileSystem模块向NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。

(2)NameNode返回是否可以上传。

(3)客户端请求第一个 Block上传到哪几个DataNode服务器上。

(4)NameNode返回3个DataNode节点,分别为dn1、dn2、dn3。

(5)客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成。

(6)dn1、dn2、dn3逐级应答客户端。

(7)客户端开始往dn1上传第一个Block(先从磁盘读取数据放到一个本地内存缓存),以Packet为单位,dn1收到一个Packet就会传给dn2,dn2传给dn3;dn1每传一个packet会放入一个应答队列等待应答。

(8)当一个Block传输完成之后,客户端再次请求NameNode上传第二个Block的服务器。(重复执行3-7步)。

在HDFS写数据的过程中,NameNode会选择距离待上传数据最近距离的DataNode接收数据。那么这个最近距离怎么计算呢?

依据节点距离,及待上传数据所在节点和DataNode所在节点距离。
不同数据中心节点距离=6;
同数据中心不同机架=4;
同机架不同节点=2;
相同节点=0;
在这里插入图片描述

HDFS读数据流程

在这里插入图片描述
(1)客户端通过DistributedFileSystem向NameNode请求下载文件,NameNode通过查询元数据,找到文件块所在的DataNode地址。

(2)挑选一台DataNode(就近原则,然后随机)服务器,请求读取数据。

(3)DataNode开始传输数据给客户端(从磁盘里面读取数据输入流,以Packet为单位来做校验)。

(4)客户端以Packet为单位接收,先在本地缓存,然后写入目标文件。

NameNode 和 SecondaryNameNode工作机制

思考:NameNode中的元数据是存储在哪里的?

首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此,元数据需要存放在内存中。但如果只存在内存中,一旦断电,元数据丢失,整个集群就无法工作了。因此产生在磁盘中备份元数据的FsImage。

这样又会带来新的问题,当在内存中的元数据更新时,如果同时更新FsImage,就会导致效率过低,但如果不更新,就会发生一致性问题,一旦NameNode节点断电,就会产生数据丢失。因此,引入Edits文件(只进行追加操作,效率很高)。每当元数据有更新或者添加元数据时,修改内存中的元数据并追加到Edits中。这样,一旦NameNode节点断电,可以通过FsImage和Edits的合并,合成元数据。

但是,如果长时间添加数据到Edits中,会导致该文件数据过大,效率降低,而且一旦断电,恢复元数据需要的时间过长。因此,需要定期进行FsImage和Edits的合并,如果这个操作由NameNode节点完成,又会效率过低。因此,引入一个新的节点SecondaryNamenode,专门用于FsImage和Edits的合并。

在这里插入图片描述
1)第一阶段:NameNode启动

(1)第一次启动NameNode格式化后,创建Fsimage和Edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。

(2)客户端对元数据进行增删改的请求。

(3)NameNode记录操作日志,更新滚动日志。

(4)NameNode在内存中对元数据进行增删改。

2)第二阶段:Secondary NameNode工作

(1)Secondary NameNode询问NameNode是否需要CheckPoint。直接带回NameNode是否检查结果。

(2)Secondary NameNode请求执行CheckPoint。

(3)NameNode滚动正在写的Edits日志。

(4)将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode。

(5)Secondary NameNode加载编辑日志和镜像文件到内存,并合并。

(6)生成新的镜像文件fsimage.chkpoint。

(7)拷贝fsimage.chkpoint到NameNode。

(8)NameNode将fsimage.chkpoint重新命名成fsimage。

DataNode工作机制

在这里插入图片描述
(1)一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。

(2)DataNode启动后向NameNode注册,通过后,周期性(6小时)的向NameNode上报所有的块信息。

(3)心跳是每3秒一次,心跳返回结果带有NameNode给该DataNode的命令如复制块数据到另一台机器,或删除某个数据块。如果超过10分钟没有收到某个DataNode的心跳,则认为该节点不可用。

(4)集群运行中可以安全加入和退出一些机器。

DataNode数据完整性如何保证

如下是DataNode节点保证数据完整性的方法。

(1)当DataNode读取Block的时候,它会计算CheckSum。

(2)如果计算后的CheckSum,与Block创建时值不一样,说明Block已经损坏。

(3)Client读取其他DataNode上的Block。

(4)常见的校验算法crc(32),md5(128),sha1(160)

(5)DataNode在其文件创建后周期验证CheckSum。

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。