您现在的位置是:首页 >其他 >OpenMMLab-AI实战营第二期——2.人体关键点检测与MMPose网站首页其他

OpenMMLab-AI实战营第二期——2.人体关键点检测与MMPose

吨吨不打野 2024-07-20 18:01:01
简介OpenMMLab-AI实战营第二期——2.人体关键点检测与MMPose

视频链接:B站-人体关键点检测与MMPose

1. 人体姿态估计的介绍和应用

在这里插入图片描述
关键点提取,属于模式识别

在这里插入图片描述
人体姿态估计的下游任务:行为识别(比如:拥抱。。)

在这里插入图片描述
下游任务:CG和动画,这个是最常见的应用

在这里插入图片描述
下游任务:人机交互(手势识别,依据收拾做出不同的响应,比如:HoloLens会对五指手势(3D)做出不同的反应)

2-1. 2D姿态估计概述

包括:

  1. 自顶向下方法
  2. 自底向上方法
  3. 单阶段方法
  4. 基于Transformer的方法

2.1 任务描述

在这里插入图片描述
2D人体姿态估计的任务:

  • 输入:一张包含人体的图像
  • 输出:人体关键点(主要关节)的坐标(2D的)

注意,这里的输出是固定对应(预定义的)18个关节的坐标,就是要找这18个位置的坐标

2.2 基于回归

在这里插入图片描述
使用深度学习的模型直接回归坐标有些困难,精度不是最优(效果不好

2.3 基于热力图

在这里插入图片描述
另一种思路是:不直接回归关键点的坐标,而是预测关键点位于每个位置的概率。

  • 比如肩的热力图(越靠近肩膀的预定义的关键点,概率越高,颜色逐渐从黄色变成红色)
  • 18个关键点,对应18个热力图

在这里插入图片描述
基于热力图天然符合神经网络的卷积算子(对每个像素都进行计算,得到每个像素的概率)

2.3.1 从数据标注生成热力图(高斯函数)

在这里插入图片描述
如果想要使用基于热力图的方式,那么首先要根据已有的标注数据生成热力图。

  • 预定义的关键点附近区域的概率其实符合这一事实:
    • 越靠近预定义的关键点,概率越高,如上图,颜色逐渐从黄色变成红色
    • 假设上面这个热力图区域是个圆形,那么任意一个直径作为 x x x轴(距离预定义关键点的距离作为自变量),是关键点的概率作为 y y y轴(因变量),则可以用高斯函数来描述 x x x y y y的关系
  • 所以这里是假设关键点区域的热力图符合高斯分布,来生成热力图(概率图),来进行训练。
  • 所以这里说热力图的尺寸,即作为控制高斯函数图像钟的宽度的 σ sigma σ参数,也就是控制热力图区域大小

复习一下高斯函数(红色线代表标准正态分布):
在这里插入图片描述
在这里插入图片描述
上图是用期望值及方差作为参数表示的高斯曲线


高斯函数是正态分布的密度函数,下图的红色是标准正态分布
在这里插入图片描述
正态分布的数学期望值或期望值 μ μ μ等于位置参数,决定了分布的位置;其方差 σ 2 sigma^2 σ2的开平方或标准差 σ sigma σ 等于尺度参数,决定了分布的幅度。

可以直接看:


2.3.2 使用热力图训练模型

在这里插入图片描述
将通过关键点标注生成的真值热力图,作为True label,与预测模型预测出来的热力图Predict label逐点比对(就是关键点附近那一小片区域的热力图),计算损失

在这里插入图片描述
所以基于热力图的方法关键就是中心点位置 ( x j , y j ) (x_j,y_j) (xj,yj)(训练目标,优化的参数)和区域大小 α alpha α(可以是超参,也可以基于图像缩放得到,缩放系数也是超参)

  • 这里其实是一个2D的高斯函数, ( x j , y j ) (x_j,y_j) (xj,yj)其实就对应上面高斯函数图像的最高点
  • 即,真值热力图的构建函数需要满足:距离关键点越近,概率越大,所以高斯函数天然满足这个性质
  • 除此之外,其实只要是类似钟形都可以,下面这个抛物线函数,还有我随便造的一个绝对值函数,其实都满足这个条件(但是概率取值范围[0,1]需要进一步处理一下才行)
    在这里插入图片描述

2.3.3 从热力图还原关键点

在这里插入图片描述

  • 最直接的办法就是求最大概率(热力图最大值)对应的位置的坐标,
    • 按照生成真值热力图的方式来倒推,是很合理的方式
    • 但这是基于:预测的热力图符合高斯函数,这一假设下的推论
    • 实际上,可能预测的热力图形状不会那么规整,可能会有多个最大值,所以直接求1个最大值这种方式不够鲁棒

在这里插入图片描述
另一种从热力图还原关键点的方式就是:

  • 先对热力图的概率进行归一化(对概率用softmax,输出的还是概率),用归一化后的概率计算位置的期望
  • 期望就是平均值,在1D的高斯函数图像中,高斯函数的最高点,对应的 x x x值,确实是 x x x取值范围的均值。
  • 可能不一定能取到最高点,但是能取到"重心",这样利用了整个热力图的概率,相对于上面只看热力图的最大概率,就会比较鲁棒,

这种计算方式还有很好的一个性质:

  • 可以进行端到端的训练,还原关键点的方式的公式,是可以求导的,所以能和整个训练过程串起来。
  • 比如,一开始训练的时候,网络初始化时,使用的是随机数作为关键点来生成初始预测热力图,第一轮训练完成后,得到生成的热力图,就可以得到一个矫正过的关键点,以此来作为第二轮使用的热力图的初始值,继续迭代。
  • ❓❓❓但是上面优化的时候只使用热力图的loss, 但是真实关键点和预测关键点也都可以拿到,关键点的loss其实也可以加上去。两种损失一起会更好吗??

2.4 自顶向下

在这里插入图片描述
上面讲的是单人的姿态估计,但是也会有多人姿态估计

最直观的一种方式(自顶向下):

  1. 先目标检测,得到每个人(检测器的精度需要保证)
  2. 再对每个人进行 单人姿态估计

模型串联的坏处,

  • 姿态估计结果会过分依赖人体目标检测的结果
  • 速度和计算量和画面中的人数成正比

2.5 自底向上

在这里插入图片描述
自底向上方法:先把关键点检测完,再去聚类其属于哪个人

优点:

  • 推理速度和画面中的人数无关
  • 关键点多,则检测速度肯定也会慢一些。但不会像自顶向下方法一样与人数成正比,人数越多的时候,自底向上比自顶向下方法快的越明显)
  • 聚类耗时肯定是和人数成正比的

2.6 单阶段方法

在这里插入图片描述

2-2. 2D姿态估计详细说明

2.1 基于回归的自顶向下方法

2.1.1 经典方法

在这里插入图片描述
以分类网络为基础,将最后一层分类改为回归,一次性预测所有J个关键点的坐标

  • 如果是人体姿态估计的话,就是18个关键点的坐标,在2D场景下,也就是要预测36个数字。。。(回归36个数字,可比分类36个类要难,目标检测里也有回归box四个坐标的方法)
  • 原始论文是用AlexNet主干+回归头做的,主干(backbone)也可以换成ResNet等结构

在这里插入图片描述
网络结构不变的情况下,使用级联模型的方式,来提高精度。

  • 第一级,输入:全身图像
  • 第二级,输入:第一步预测点为中心的裁剪后的局部区域

类似医疗影像分割里的级联:

  • 第一级,输入:医疗影像
  • 第二级,输入:医疗影像+第一级得到的概率图

在这里插入图片描述
优势:

  1. 回归模型理论上可以达到无限精度,热力图方法的精度受限于特征图的空间分辨率(也不一定,加个期望上去有时候也可以突破这个限制)
  2. 回归模型不需要维持高分辨率特征图,计算更高效。相比之下,热力图方法的特征图的size不能低于热力图的size,所以热力图方法确实要计算和存储高分辨率特征图,计算成本(硬件要求)更高

劣势:

  • 图像到关键点坐标的映射是高度非线性的,导致直接回归坐标,比通过热力图(概率)得到坐标更难,同时回归方法的精度也低于热力图,因此DeepPose提出之后很长一段时间,2D关键点预测算法主要都是基于热力图的。

2.1.2 基于最大似然估计的改进(RLE)

在这里插入图片描述
之前的基于回归方法的姿态估计,

  • 损失函数为:真实关键点位置 μ g mu_g μg与模型预测关键点位置 μ ~ ildemu μ~的误差作为损失
    • 这背后隐含了高斯分布的假设,即:预测点距离关键点越近,就越好,因此以关键点为圆心,相同半径圆周上的点作为预测点,其误差都是一样的。即:认为预测点分布在真实点形成的一个圆形里。
    • 但是实际上,人体的关节有不同的形状如下图:踝关节,红色是关键点,蓝色围成的区域就是分布,不是个圆形,不是只靠一个方向的距离就可以衡量误差的(每个方向距离引起的误差在损失函数中权重应该是不同的):
      在这里插入图片描述

另外,下面这篇文章创新点的部分,要先去看下面的背景知识,看完就基本就懂这个创新点了。
在这里插入图片描述

  • 模型给出基础分布的参数
  • RLE模块基于标准化流,给出位置的分布

论文就直接在MMPose里找了,这里Topdown Regression + Mobilenetv2 + Rle on Coco
在这里插入图片描述
论文arxiv链接:Human Pose Regression with Residual Log-likelihood Estimation


2.1.2 背景知识-回归和最大似然估计的联系

在这里插入图片描述

  • 关于二范数(L2-norm损失函数)这个名词,可以看看:区分混淆概念之L2范数,L2范数损失,L2损失,均方误差
  • 如上面的右图,使用二范数(最小二乘误差/最小平方误差)进行回归
    • 其实隐含了 关键点位置 符合 固定方差的各向同性的高斯分布 的假设,但是实际上,在真实的人体关节,关键点的位置并不一定符合高斯分布
  • 因此RLE的关键在于:
    • 将简单的高斯分布替换为一个可学习的、表达能力更强的分布(用在损失函数上),来更好指导模型学习真实的关键点位置分布。
    • 因为基于高斯分布假设的回归误差,和高斯似然下的最大似然估计是等价的
  • 注意,这里的二范数误差回归的各向同性高斯分布,是基于回归的方法用在损失函数上的;但是原理和基于热力图的方法里,使用标注关键点生成热力图的思想是类似的。

2.1.2 背景知识-标准化流Normalizing Flow

在这里插入图片描述
标准化流Normalizing Flow:

  • 一种生成建模方法,通过一系列可学习的可逆的映射( f f f是学习出来的,同时要满足是可逆的),将标准分布的随机变量映射成复杂分布的随机变量,可用于建模复杂的概率分布
  • p 0 p_0 p0是标准分布,解析式已知,可以计算其导数等性质
  • 后面所有对 z 0 z_0 z0进行的变换 f f f,都是由神经网络构建的(学习得到所有的映射 f f f

在这里插入图片描述
在学习确定所有 f f f的准确形式后,考虑根据 f f f反向推导出 p 0 ( z 0 ) p_0(z_0) p0(z0)(模型推理),在模型参数确定( f f f已知)后,计算给定数据点(例如: x x x)的概率密度( p K ( z K = x ) p_K(z_K=x) pK(zK=x)

在这里插入图片描述
在这里插入图片描述
模型学习(求解损失函数,对损失函数进行化简)上述公式,对 p k ( x ) p_k(x) pk(x)取对数,

  • 这样乘法 ∏ i = 1 k prod^k_{i=1} i=1k就变成了加法 ∑ i = 1 k sum^k_{i=1} i=1k(这个latex语法是’prod’,product是乘积的意思),
  • 注意,后面的det外面还套了个-1,因此就变成 p 0 ( z 0 ) − ∑ i = 1 K l o g ∣ d e t ∂ f i ( z i − 1 ) ∂ ( z i − 1 ) ∣ p_0(z_0) - sum^K_{i=1}log|detfrac{partial f_i(z_{i-1})}{partial (z_{i-1})}| p0(z0)i=1Klogdet(zi1)fi(zi1)
  • 全体参数 Φ Phi Φ,latex-Phi

概率分布 p K p_K pK受到构建该分布的神经网络 f 1 , . . . , f K f_1,...,f_K f1,...,fK的全体参数 Φ Phi Φ控制

  • 可以通过梯度下降优化 Φ Phi Φ,这里会涉及对Jacobian的行列式的梯度的计算,可以通过适当映射 f i f_i fi映射的函数形式,让这个计算变简单。
  • RLE论文使用的标准化流模型是RealNVP

2.1.2 RLE的整体设计

在这里插入图片描述
除了基于标准化流构建分布(RLE的主要目标,找出关键点的位置分布),RLE还使用了以下两个技巧来降低模型拟合真实分布的难度:

  1. 重(chong)参数化
  2. 残差似然函数

在这里插入图片描述
为降低建模分布的难度,假设所有关键点的分布属于同一个位置尺度族,即所有分布由某个零均值的基础分布通过平移缩放得来。(重参数化,重复一部分参数)

  • 例如:所有一元正态分布 N ( x ∣ μ , σ ) mathscr{N}(x|mu,sigma) N(xμ,σ)构成位置尺度族,基础分布为标准正态分布。
    对标准正态分布进行平移缩放,就可以得到任意其他的一元正态分布。
  • 重参数化的思想,有点像,卷积层的参数共享(卷积核/模板参数共享),都是为了减少参数,所以公用了一部分参数

所以整体就是:

  • 标准化流拟合基础分布 x ˉ ar x xˉ
  • 卷积网络预测平移缩放参数 μ ~ , σ ~ ilde mu, ilde sigma μ~,σ~
  • 即上图右下侧的示意图

❓❓❓
推理阶段,则只需要卷积网络预测的平移(❓为什么不考虑缩放)参数,❓不用推理标准化流


在这里插入图片描述
挺好理解的,看ppt就行
在这里插入图片描述
对标准化流模型得到的标准分布,进一步使用残差似然函数,就变成上图了

2.2 基于热力图的自顶向下方法

在这里插入图片描述
Hourgalss网络,是姿态估计领域标志性的工作

3. 3D姿态估计

4. 人体姿态估计的评估方法

5. DensePose

6. 人体参数化模型

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。