您现在的位置是:首页 >其他 >算法Day15 | 层序遍历,102,107,199,637,429,515,116,117,104,111,226,101网站首页其他
算法Day15 | 层序遍历,102,107,199,637,429,515,116,117,104,111,226,101
Day15
层序遍历
层序遍历就相当于图论中的广度优先搜索。
递归遍历就相当于图论中的深度优先搜索。
只使用二叉树结构,无法层序遍历。因为当你遍历到一个某个节点左节点时,无法遍历到其右节点。需要一个其他结构来辅助。选择使用队列queue
保存每一层待遍历的元素。
102.二叉树的层序遍历
题目链接:102.二叉树的层序遍历
迭代
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
queue<TreeNode*> que;//记录每层节点
vector<vector<int>> res;
if (root) que.push(root);
while (!que.empty()) {
vector<int> res1;
int size = que.size();//用于记录弹出节点个数,就是每层节点个数
while (size--) {
TreeNode* cur = que.front();
que.pop();
res1.push_back(cur->val);//记录节点数值
if (cur->left) que.push(cur->left);//左节点入队列
if (cur->right) que.push(cur->right);//右节点入队列
}
res.push_back(res1);
}
return res;
}
};
递归
class Solution {
public:
void recursive(TreeNode* cur, vector<vector<int>>& res, int depth) {
if (!cur) return;//返回条件
if (res.size() == depth) res.push_back(vector<int>());//开辟一个空的vector<int>
// if (res.size() == depth) res.emplace_back();等价于上一行
res[depth].push_back(cur->val);
recursive(cur->left, res, depth + 1);
recursive(cur->right, res, depth + 1);
}
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> res;
int depth = 0;//给res二维数组,用来赋外层索引
recursive(root, res, depth);
return res;
}
};
107.二叉树的层次遍历 II
题目链接:107.二叉树的层次遍历 II
因为节点遍历只能从根节点开始。所以就正常层序遍历,最后结果反转一下。
迭代
class Solution {
public:
vector<vector<int>> levelOrderBottom(TreeNode* root) {
vector<vector<int>> res;
queue<TreeNode*> que;
if (root) que.push(root);
while (!que.empty()) {
int size = que.size();
vector<int> res1;
while (size--) {
TreeNode* cur = que.front();
que.pop();
res1.push_back(cur->val);
if (cur->left) que.push(cur->left);
if (cur->right) que.push(cur->right);
}
res.push_back(res1);
}
reverse(res.begin(), res.end());
return res;
}
};
递归
class Solution {
public:
void recursion(TreeNode* root, vector<vector<int>>& res, int depth) {
if (!root) return;
if (res.size() == depth) res.emplace_back();
res[depth].emplace_back(root->val);
recursion(root->left, res, depth + 1);
recursion(root->right, res, depth + 1);
}
vector<vector<int>> levelOrderBottom(TreeNode* root) {
vector<vector<int>> res;
int depth = 0;
recursion(root, res, depth);
reverse(res.begin(), res.end());
return res;
}
};
199.二叉树的右视图
题目链接:199.二叉树的右视图
迭代
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
queue<TreeNode*> que;
vector<int> res;
if (root) que.push(root);
while (!que.empty()) {
int size = que.size();
while (size--) {
TreeNode* cur = que.front();
que.pop();
if (!size)/*size = 0*/ res.push_back(cur->val);
if (cur->left) que.push(cur->left);
if (cur->right) que.push(cur->right);
}
}
return res;
}
};
递归
class Solution {
public:
void recursion(TreeNode* root, vector<int>& res, int depth) {
if (!root) return;
if (res.size() == depth) res.emplace_back(root->val);
//先加入右节点元素,因为是保存右节点
recursion(root->right, res, depth + 1);
recursion(root->left, res, depth + 1);
}
vector<int> rightSideView(TreeNode* root) {
vector<int> res;
int depth = 0;
recursion(root, res, depth);
return res;
}
};
637.二叉树的层平均值
题目链接:637.二叉树的层平均值
class Solution {
public:
vector<double> averageOfLevels(TreeNode* root) {
vector<double> res;
queue<TreeNode*> que;
if (root) que.push(root);
while (!que.empty()) {
int size = que.size();
double sum = 0;
int cnt = 0;
while (size--) {
TreeNode* cur = que.front();
que.pop();
sum += cur->val;
++cnt;
if (cur->left) que.push(cur->left);
if (cur->right) que.push(cur->right);
}
res.push_back(sum / cnt);
}
return res;
}
};
429.N叉树的层序遍历
题目链接:429.N叉树的层序遍历
class Solution {
public:
vector<vector<int>> levelOrder(Node* root) {
queue<Node*> que;
vector<vector<int>> res;
if (root) que.push(root);
while (!que.empty()) {
int size = que.size();
vector<int> res1;
while (size--) {
Node* cur = que.front();
que.pop();
res1.push_back(cur->val);
for (auto& i : cur->children) {
que.push(i);
}
}
res.push_back(res1);
}
return res;
}
};
515.在每个树行中找最大值
题目链接:515.在每个树行中找最大值
class Solution {
public:
vector<int> largestValues(TreeNode* root) {
vector<int> res;
queue<TreeNode*> que;
if (root) que.push(root);
while (!que.empty()) {
int size = que.size();
int maxValue = INT_MIN;
while (size--) {
TreeNode* cur = que.front();
que.pop();
maxValue = max(maxValue, cur->val);
if (cur->left) que.push(cur->left);
if (cur->right) que.push(cur->right);
}
res.push_back(maxValue);
}
return res;
}
};
116.填充每个节点的下一个右侧节点指针
题目链接:116.填充每个节点的下一个右侧节点指针
class Solution {
public:
Node* connect(Node* root) {
queue<Node*> que;
if (root) que.push(root);
while (!que.empty()) {
int size = que.size();
while (size--) {
Node* cur = que.front();
que.pop();
if (size) cur->next = que.front();//如果不是最后一个,与下一个节点相连
if (cur->left) que.push(cur->left);
if (cur->right) que.push(cur->right);
}
}
return root;
}
};
117.填充每个节点的下一个右侧节点指针II
题目链接:117.填充每个节点的下一个右侧节点指针II
与上一道题一模一样
class Solution {
public:
Node* connect(Node* root) {
queue<Node*> que;
if (root) que.push(root);
while (!que.empty()) {
int size = que.size();
while (size--) {
Node* cur = que.front();
que.pop();
if (size) cur->next = que.front();
if (cur->left) que.push(cur->left);
if (cur->right) que.push(cur->right);
}
}
return root;
}
};
104.二叉树的最大深度
题目链接:104.二叉树的最大深度
class Solution {
public:
int maxDepth(TreeNode* root) {
queue<TreeNode*> que;
if (root) que.push(root);
int res = 0;
while (!que.empty()) {
int size = que.size();
while (size--) {
TreeNode* cur = que.front();
que.pop();
if (cur->left) que.push(cur->left);
if (cur->right) que.push(cur->right);
}
++res;
}
return res;
}
};
111.二叉树的最小深度
题目链接:111.二叉树的最小深度
class Solution {
public:
int minDepth(TreeNode* root) {
queue<TreeNode*> que;
if (!root) return 0;
if (root) que.push(root);
int res = 1;//至少有一层
while (!que.empty()) {
int size = que.size();
while (size--) {
TreeNode* cur = que.front();
que.pop();
if (cur->left) que.push(cur->left);
if (cur->right) que.push(cur->right);
if (!cur->left && !cur->right) return res;
}
++res;
}
return res;
}
};
226.翻转二叉树
题目链接:226.翻转二叉树
前、后序遍历很简单。
前序递归
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (!root) return nullptr;
swap(root->left, root->right);//中
invertTree(root->left);//左
invertTree(root->right);//右
return root;
}
};
后序递归
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (!root) return nullptr;
invertTree(root->left);//左
invertTree(root->right);//右
swap(root->left, root->right);//中
return root;
}
};
中序递归:代码上看是两次root->left
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (!root) return nullptr;
invertTree(root->left);//左
swap(root->left, root->right);//中
//因为上一行代码已经处理过左树,处理完换成右树
//接下来要处理的是原来的右树,但是已经变成左树了
invertTree(root->left);//右
return root;
}
};
前序迭代
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
stack<TreeNode*> st;
if (root) st.push(root);
while (!st.empty()) {
TreeNode* cur = st.top();
if (cur) {
st.pop();
if (cur->right) st.push(cur->right);//右
if (cur->left) st.push(cur->left);//左
st.push(cur);//中
st.push(nullptr);
} else {
st.pop();
cur = st.top();
st.pop();
swap(cur->left, cur->right);
}
}
return root;
}
};
中序迭代
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
stack<TreeNode*> st;
if (root) st.push(root);
while (!st.empty()) {
TreeNode* cur = st.top();
st.pop();
if (cur) {
if (cur->right) st.push(cur->right);//右
st.push(cur);//中
st.push(nullptr);
if (cur->left) st.push(cur->left);//左
} else {
cur = st.top();
st.pop();
swap(cur->left, cur->right);
}
}
return root;
}
};
后序迭代
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
stack<TreeNode*> st;
if (root) st.push(root);
while (!st.empty()) {
TreeNode* cur = st.top();
st.pop();
if (cur) {
st.push(cur);
st.push(nullptr);
if (cur->right) st.push(cur->right);
if (cur->left) st.push(cur->left);
} else {
cur = st.top();
st.pop();
swap(cur->left, cur->right);
}
}
return root;
}
};
层序迭代
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
queue<TreeNode*> que;
if (root) que.push(root);
while (!que.empty()) {
int size = que.size();
while (size--) {
TreeNode* cur = que.front();
que.pop();
swap(cur->left, cur->right);
if (cur->left) que.push(cur->left);
if (cur->right) que.push(cur->right);
}
}
return root;
}
};
101.对称二叉树
题目链接:101.对称二叉树
因为是先判断左右是否对称,再将结果传给中。顺序为左右中。所以是后序遍历。
递归
class Solution {
public:
bool recursion(TreeNode* cur1, TreeNode* cur2) {
//先排除空节点
//这两个语句不能调换
if (!cur1 && !cur2) return true;
//非空之后,再排除值。
if (!cur1 || !cur2 || cur1->val != cur2->val/*值判断一定要在非空之后*/) return false;
auto outside = recursion(cur1->left, cur2->right);
auto inside = recursion(cur1->right, cur2->left);
return outside && inside;
}
bool isSymmetric(TreeNode* root) {
if (!root) return true;
return recursion(root->left, root->right);
}
};
对于判断条件需要强调:
if (!cur1 && !cur2) return true;
if (!cur1 || !cur2) return false;
第一个if
判断了同时为空的条件,满足条件,执行return
。如果执行到第二条if
语句,表示第一个if
一定失效,即cur1
和cur2
不可能同时为空(有cur1
为空,则cur2
不为空;cur1
不为空,则cur2
为空),所以第二个if
只需要判断cur1
不为空(cur2
一定为空)或者cur2
不为空(cur1
一定为空)即可。重要的是这两条if
不能颠倒顺序。
if (!cur1 && !cur2) return true;
if (!cur1 && cur2) return false;
if (cur1 && !cur2) return false;
也就是,上面三条if
可以用两条if
来代替。因为第二条的if
中的cur2
和第三条if
中的cur1
一定是非空的,是多余的。
由于if
后是return
语句,所以可以写先if( && )
再写if( || )
。更具一般性地,if( && ) else if ( || )
。
迭代
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if (!root) return true;
stack<TreeNode*> st;
st.push(root->left);
st.push(root->right);
while (!st.empty()) {
auto leftNode = st.top();st.pop();
auto rightNode = st.top();st.pop();
if (!leftNode && !rightNode) continue;
if (!leftNode || !rightNode || leftNode->val != rightNode->val)
return false;
st.push(leftNode->left);
st.push(rightNode->right);
st.push(leftNode->right);
st.push(rightNode->left);
}
return true;
}
};