您现在的位置是:首页 >技术交流 >【机器人3】图像雅可比矩阵原理与推导网站首页技术交流

【机器人3】图像雅可比矩阵原理与推导

Wilbur11 2024-10-27 12:01:03
简介【机器人3】图像雅可比矩阵原理与推导

图像雅可比矩阵原理与推导

理想情况下,图像像素坐标系和图像物理坐标系无倾斜,则二者坐标转换关系如下,且两边求导:
在这里插入图片描述
[ u v 1 ] = [ 1 d x 0 u 0 0 1 d y v 0 0 0 1 ] [ x y 1 ] (1) egin{bmatrix}u\v\1end{bmatrix}=egin{bmatrix}frac{1}{d_x}&0&u_0\0&frac{1}{d_y}&v_0\0&0&1end{bmatrix}egin{bmatrix}x\y\1end{bmatrix} ag{1} uv1 = dx1000dy10u0v01 xy1 (1) { u ˙ = 1 d x x ˙ v ˙ = 1 d y y ˙ (2) egin{cases}dot{u}=frac{1}{d_x}dot{x}\ dot{v}=frac{1}{d_y}dot{y}end{cases} ag{2} {u˙=dx1x˙v˙=dy1y˙(2)由小孔成像原理,空间一点的相机坐标和图像物理坐标转换关系如下,且两边求导:在这里插入图片描述 [ x y 1 ] = [ f Z c 0 0 0 f Z c 0 0 0 1 Z c ] [ X c Y c Z c ] (3) egin{bmatrix}x\ y\ 1end{bmatrix}=egin{bmatrix}frac{f}{Z_c}&0&0\ 0&frac{f}{Z_c}&0\ 0&0&frac{1}{Z_c}end{bmatrix}egin{bmatrix}X_c\ Y_c\ Z_cend{bmatrix} ag{3} xy1 = Zcf000Zcf000Zc1 XcYcZc (3) { x ˙ = f ( X ˙ c Z c − X c Z ˙ c Z c 2 ) = f X ˙ c Z c − x Z ˙ c Z c y ˙ = f ( Y ˙ c Z c − Y c Z ˙ c Z c 2 ) = f Y ˙ c Z c − y Z ˙ c Z c (4) egin{cases}dot{x}=f(frac{dot{X}_c}{Z_c}-frac{X_cdot{Z}_c}{Z_c^2})=frac{fdot{X}_c}{Z_c}-frac{xdot{Z}_c}{Z_c}\ dot{y}=f(frac{dot{Y}_c}{Z_c}-frac{Y_cdot{Z}_c}{Z_c^2})=frac{fdot{Y}_c}{Z_c}-frac{ydot{Z}_c}{Z_c}end{cases} ag{4} {x˙=f(ZcX˙cZc2XcZ˙c)=ZcfX˙cZcxZ˙cy˙=f(ZcY˙cZc2YcZ˙c)=ZcfY˙cZcyZ˙c(4)固定相机,移动空间点时,速度关系为: p ˙ c = c v p + c ω p × p c (5) dot{oldsymbol{p}}_c =^coldsymbol{v}_p +^coldsymbol{omega}_p imesoldsymbol{p}_c ag{5} p˙c=cvp+cωp×pc(5)固定空间点,移动相机时,速度关系为: p ˙ c = − c v c − c ω c × p c (6) dot{oldsymbol{p}}_c = -^coldsymbol{v}_c -^coldsymbol{omega}_c imesoldsymbol{p}_c ag{6} p˙c=cvccωc×pc(6) { X ˙ c = − c ν c , x − c ω c , y Z c + c ω c , z Y c Y ˙ c = − c ν c , y − c ω c , z X c + c ω c , x Z c Z ˙ c = − c ν c , z − c ω c , x Y c + c ω c , y X c (7) egin{cases}dot{X}_c=-{}^c u_{c,x}-{}^comega_{c,y}Z_c+{}^comega_{c,z}Y_c\ dot{Y}_c=-{}^c u_{c,y}-{}^comega_{c,z}X_c+{}^comega_{c,x}Z_c\ dot{Z}_c=-{}^c u_{c,z}-{}^comega_{c,x}Y_c+{}^comega_{c,y}X_cend{cases} ag{7} X˙c=cνc,xcωc,yZc+cωc,zYcY˙c=cνc,ycωc,zXc+cωc,xZcZ˙c=cνc,zcωc,xYc+cωc,yXc(7)将(7)代入(4),得: { x ˙ = − f Z c c v c , x + x Z c c v c , z + x y f c ω c , x − f 2 + x 2 f c ω c , y + y c ω c , z y ˙ = − f Z c c v c , y + y Z c c v c , z + f 2 + y 2 f c ω c , x − x y f c ω c , y − x c ω c , z (8) left{egin{array}{l} dot{x}=-frac{f}{Z_{c}}{ }^{c} v_{c, x}+frac{x}{Z_{c}}{ }^{c} v_{c, z}+frac{x y}{f}{ }^{c} omega_{c, x}-frac{f^{2}+x^{2}}{f}{ }^{c} omega_{c, y}+y^{c} omega_{c, z} \ dot{y}=-frac{f}{Z_{c}}{ }^{c} v_{c, y}+frac{y}{Z_{c}}{ }^{c} v_{c, z}+frac{f^{2}+y^{2}}{f}{ }^{c} omega_{c, x}-frac{x y}{f}{ }^{c} omega_{c, y}-x^{c} omega_{c, z} end{array} ight. ag{8} {x˙=Zcfcvc,x+Zcxcvc,z+fxycωc,xff2+x2cωc,y+ycωc,zy˙=Zcfcvc,y+Zcycvc,z+ff2+y2cωc,xfxycωc,yxcωc,z(8)即: [ x ˙ y ˙ ] = [ − f Z c 0 x Z c x y f − f 2 + x 2 f y 0 − f Z c y Z c f 2 + y 2 f − x y f − x ] [ c v c , x c v c , y c v c , z c ω c , x c ω c , y c ω c , z ] (9) egin{bmatrix}dot{x}\ dot{y}end{bmatrix}=egin{bmatrix}-frac{f}{Z_c}&0&frac{x}{Z_c}&frac{xy}{f}&-frac{f^2+x^2}{f}&y\ 0&-frac{f}{Z_c}&frac{y}{Z_c}&frac{f^2+y^2}{f}&-frac{xy}{f}&-xend{bmatrix}left[egin{array}{l} { }^{c} v_{c, x} \ { }^{c} v_{c, y} \ { }^{c} v_{c, z} \ { }^{c} omega_{c, x} \ { }^{c} omega_{c, y} \ { }^{c} omega_{c, z} end{array} ight] ag{9} [x˙y˙]=[Zcf00ZcfZcxZcyfxyff2+y2ff2+x2fxyyx] cvc,xcvc,ycvc,zcωc,xcωc,ycωc,z (9)将(9)以及 x = d x ( u − u 0 ) x=d_{x}left(u-u_{0} ight) x=dx(uu0) y = d y ( v − v 0 ) y=d_y(v-v_0) y=dy(vv0)代入(2): [ u ˙ v ˙ ] = [ − f d x Z c 0 ( u − u 0 ) Z c ( u − u 0 ) d y ( v − v 0 ) f − f 2 + d x 2 ( u − u 0 ) 2 d x f d y ( v − v 0 ) d x 0 − f d y Z c ( v − v 0 ) Z c f 2 + d y 2 ( v − v 0 ) 2 d y f − d x ( u − u 0 ) ( v − v 0 ) f − d x ( u − u 0 ) d y ] [ c v c , x c v c , y c v c , z c ω c , x c ω c , y c ω c , z ] (10) left[egin{array}{c} dot{u} \ dot{v} end{array} ight]=left[egin{array}{cccccc} -frac{f}{d_{x} Z_{c}} & 0 & frac{left(u-u_{0} ight)}{Z_{c}} & frac{left(u-u_{0} ight) d_{y}left(v-v_{0} ight)}{f} & -frac{f^{2}+d_{x}^{2}left(u-u_{0} ight)^{2}}{d_{x} f} & frac{d_{y}left(v-v_{0} ight)}{d_{x}} \ 0 & -frac{f}{d_{y} Z_{c}} & frac{left(v-v_{0} ight)}{Z_{c}} & frac{f^{2}+d_{y}^{2}left(v-v_{0} ight)^{2}}{d_{y} f} & -frac{d_{x}left(u-u_{0} ight)left(v-v_{0} ight)}{f} & -frac{d_{x}left(u-u_{0} ight)}{d_{y}} end{array} ight]left[egin{array}{l} { }^{c} v_{c, x} \ { }^{c} v_{c, y} \ { }^{c} v_{c, z} \ { }^{c} omega_{c, x} \ { }^{c} omega_{c, y} \ { }^{c} omega_{c, z} end{array} ight] ag{10} [u˙v˙]= dxZcf00dyZcfZc(uu0)Zc(vv0)f(uu0)dy(vv0)dyff2+dy2(vv0)2dxff2+dx2(uu0)2fdx(uu0)(vv0)dxdy(vv0)dydx(uu0) cvc,xcvc,ycvc,zcωc,xcωc,ycωc,z (10)即: [ u ˙ v ˙ ] = J i m g [ c v c c u c ] (11) egin{bmatrix}dot{u}\ dot{v}end{bmatrix}=J_{img}egin{bmatrix}^coldsymbol{v}_{c}\^c oldsymbol{u}_{c}end{bmatrix} ag{11} [u˙v˙]=Jimg[cvccuc](11)可得图像雅可比矩阵: J i m g = [ − f d x Z c 0 ( u − u 0 ) Z c ( u − u 0 ) d y ( v − v 0 ) f − f 2 + d x 2 ( u − u 0 ) 2 d x f d y ( v − v 0 ) d x 0 − f d y Z c ( v − v 0 ) Z c f 2 + d y 2 ( v − v 0 ) 2 d y f − d x ( u − u 0 ) ( v − v 0 ) f − d x ( u − u 0 ) d y ] (12) J_{img}=left[egin{array}{cccccc} -frac{f}{d_{x} Z_{c}} & 0 & frac{left(u-u_{0} ight)}{Z_{c}} & frac{left(u-u_{0} ight) d_{y}left(v-v_{0} ight)}{f} & -frac{f^{2}+d_{x}^{2}left(u-u_{0} ight)^{2}}{d_{x} f} & frac{d_{y}left(v-v_{0} ight)}{d_{x}} \ 0 & -frac{f}{d_{y} Z_{c}} & frac{left(v-v_{0} ight)}{Z_{c}} & frac{f^{2}+d_{y}^{2}left(v-v_{0} ight)^{2}}{d_{y} f} & -frac{d_{x}left(u-u_{0} ight)left(v-v_{0} ight)}{f} & -frac{d_{x}left(u-u_{0} ight)}{d_{y}} end{array} ight] ag{12} Jimg= dxZcf00dyZcfZc(uu0)Zc(vv0)f(uu0)dy(vv0)dyff2+dy2(vv0)2dxff2+dx2(uu0)2fdx(uu0)(vv0)dxdy(vv0)dydx(uu0) (12)如有不足之处欢迎指出~

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。