您现在的位置是:首页 >技术教程 >基于MMDet的Swin Transformer遥感图像检测网站首页技术教程
基于MMDet的Swin Transformer遥感图像检测
简介基于MMDet的Swin Transformer遥感图像检测
主要使用swin trasnsformer试了一下sar图像的目标检测,用了舰船ssdd数据集和地面目标MSTAR数据集。
MMDet安装
MMDet地址:https://github.com/open-mmlab/mmdetection
直接pull下来后按照官方文档进行安装环境即可。
记得如果克隆环境或转移到别的环境,需要重新setup一下
python setup.py develop
Swin Transformer代码
1.创建configs下的配置文件
configs/swin下创建一个faster_rcnn_swin_l-p4-w12_coco.py
在这个文件中可以修改学习率、迭代次数等参数。
_base_ = [
'../_base_/models/faster_rcnn_swin_large_fpn.py',
'../_base_/datasets/faster_rcnn_coco_instance.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
optimizer = dict(
_delete_=True,
type='AdamW',
# lr=0.0001,
lr=0.000051,
betas=(0.9, 0.999),
weight_decay=0.05,
paramwise_cfg=dict(
custom_keys={
'absolute_pos_embed': dict(decay_mult=0.),
'relative_position_bias_table': dict(decay_mult=0.),
'norm': dict(decay_mult=0.)
}))
lr_config = dict(warmup_iters=1000, step=[27, 33])
runner = dict(type='EpochBasedRunner', max_epochs=36)
2.创建model文件
在/base/models/中新建faster_rcnn_swin_large_fpn.py文件
在文件中可以修改网络backbone、neck等配置,这里使用swin的large模型,PAFPN为neck。
# model settings
pretrained = 'D:/Project/mmdetection-master/checkpoints/swin_large_patch4_window12_384_22k.pth'
# 1. ROI 0.5-0.7
# 2. pafpn
# 3. albu_train_transforms
# 4. 多尺度
model = dict(
type='FasterRCNN',
backbone=dict(
type='SwinTransformer',
embed_dims=192,
depths=[2, 2, 18, 2],
num_heads=[6, 12, 24, 48],
window_size=12,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.2,
patch_norm=True,
out_indices=(0, 1, 2, 3),
with_cp=False,
convert_weights=True,
init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
neck=dict(
type='PAFPN',
in_channels=[192, 384, 768, 1536],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='StandardRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=10,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
# nms=dict(type='nms', iou_threshold=0.6),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
# nms=dict(type='nms', iou_threshold=0.5),
nms=dict(type='nms', iou_threshold=0.6),
max_per_img=100)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
))
3.创建数据集文件
在/base/datasets/中创建faster_rcnn_coco_instance.py文件
代码包含了albu数据增强,可以调整图像大小,samples_per_gpu和 workers_per_gpu等。
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco_mstar/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
albu_train_transforms = [
# dict(
# type='HorizontalFlip',
# p=0.5),
# dict(
# type='VerticalFlip',
# p=0.5),
dict(
type='ShiftScaleRotate',
shift_limit=0.0625,
scale_limit=0.0,
rotate_limit=180,
interpolation=1,
p=0.5),
# dict(
# type='RandomBrightnessContrast',
# brightness_limit=[0.1, 0.3],
# contrast_limit=[0.1, 0.3],
# p=0.2),
# dict(
# type='OneOf',
# transforms=[
# dict(
# type='RGBShift',
# r_shift_limit=10,
# g_shift_limit=10,
# b_shift_limit=10,
# p=1.0),
# dict(
# type='HueSaturationValue',
# hue_shift_limit=20,
# sat_shift_limit=30,
# val_shift_limit=20,
# p=1.0)
# ],
# p=0.1),
# # dict(type='JpegCompression', quality_lower=85, quality_upper=95, p=0.2),
#
# dict(type='ChannelShuffle', p=0.1),
# dict(
# type='OneOf',
# transforms=[
# dict(type='Blur', blur_limit=3, p=1.0),
# dict(type='MedianBlur', blur_limit=3, p=1.0)
# ],
# p=0.1),
]
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
# dict(type='Resize', img_scale=(448, 448), keep_ratio=True),
dict(type='Resize', img_scale=[(768, 768), (1333,800)], keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
# dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
# dict(type='DefaultFormatBundle'),
# dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
dict(
type='Albu',
transforms=albu_train_transforms,
bbox_params=dict(
type='BboxParams',
format='pascal_voc',
label_fields=['gt_labels'],
min_visibility=0.0,
filter_lost_elements=True),
keymap={
'img': 'image',
'gt_bboxes': 'bboxes'
},
update_pad_shape=False,
skip_img_without_anno=True),
dict(type='Normalize', **img_norm_cfg),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels'],
meta_keys=('filename', 'ori_shape', 'img_shape', 'img_norm_cfg',
'pad_shape', 'scale_factor')
)
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
# img_scale=(448, 448),
img_scale=[(768, 768), (1333, 800)],
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
train=dict(
type=dataset_type,
# ann_file=data_root + 'annotations/instances_train2017.json',
# img_prefix=data_root + 'train2017/',
ann_file=data_root + 'annotations/train.json',
img_prefix=data_root + 'train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/val.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/val.json',
img_prefix=data_root + 'val2017/',
pipeline=test_pipeline))
evaluation = dict(metric=['bbox'])
4.修改数据集classes
在mmdet/datasets/ 的 coco.py文件中写明类别。
# CLASSES = ('ship',)
CLASSES = ('2S1', 'BMP2', 'BRDM2', 'BTR60', 'BTR70', 'D7', 'T62', 'T72', 'ZIL131', 'ZSU234',)
# CLASSES = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9',)
5.训练model
在选定的conda环境下执行
python tools/train.py configs/swin/faster_rcnn_swin_l-p4-w12_coco.py
会在根目录的work_dirs生成pth文件,如果报错可以自己建文件夹。
6.测试ckpt
在选定的conda环境
python demo/image_demo.py data/coco/train2017/000092.jpg configs/swin/faster_rcnn_swin_l-p4-w12_coco.py work_dirs/faster_rcnn_swin_l-p4-w12_coco.py/epoch_12.pth
7.测试model
python tools/test.py configs/swin/faster_rcnn_swin_l-p4-w12_coco.py work_dirs/faster_rcnn_swin_l-p4-w12_coco.py/epoch_12.pth --eval bbox --out work_dirs/faster_rcnn_swin_l-p4-w12_coco.py/result.pkl --show-score-thr 0.5 --show-dir work_dirs/faster_rcnn_swin_l-p4-w12_coco.py/eval/ --eval-options "classwise=True"
风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。