您现在的位置是:首页 >其他 >深度学习训练营之彩色图片分类2网站首页其他

深度学习训练营之彩色图片分类2

无你想你 2023-06-21 16:00:02
简介深度学习训练营之彩色图片分类2

原文链接

环境介绍

  • 语言环境:Python3.9.13
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2

前置工作

设置GPU

因为本次实验的数据量过大,所有设置多个GPU很有必要

import torch
import torch.nn as nn
import matplotlib.pyplot as plt#绘制和显示图片
import torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#查看cuda是否存在,cuda存在就保存为cuda进行运行,否则使用cpu
device

导入数据

导入的数据是自带的,不需要自行准备
使用CIFAR10当中的数据集
使用dataloader进行下载

train_ds = torchvision.datasets.CIFAR10('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.CIFAR10('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

数据量比较大,下载的时间会比较长,这是我二次运行之后的结果
在这里插入图片描述
数据进行打乱操作,并设计最基本的batch_size

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)#打乱数据

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)

查看数据格式类型

# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shape

在这里插入图片描述

数据查看

查看一下图片

import numpy as np

 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) #这个可以根据自己的想法进行调整
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')

在这里插入图片描述

构建CNN网络

CNN网络的简单介绍

对于一般的CNN网络来说,就是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于图片进行分类
⭐1. torch.nn.Conv2d()详解

函数原型:

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

关键参数说明:

  • in_channels ( int ) – 输入图像中的通道数
  • out_channels ( int ) – 卷积产生的通道数
  • kernel_size ( int or tuple ) – 卷积核的大小
  • stride ( int or tuple , optional ) – 卷积的步幅。默认值:1
  • padding ( int , tuple或str , optional ) – 添加到输入的所有四个边的填充。默认值:0
  • padding_mode (字符串,可选) – ‘zeros’, ‘reflect’, ‘replicate’或’circular’. 默认:‘zeros’
    dilation:扩张操作,用线性代数的方法去理解,就是对原本的图片的每一个位置上对应的数乘以一个矩阵(这个矩阵会根据不同的选择有不同的结果),形成一个新的矩阵
    ⭐2. torch.nn.Linear()详解

函数原型:

torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

关键参数说明:

  • in_features:每个输入样本的大小
  • out_features:每个输出样本的大小

⭐3. torch.nn.MaxPool2d()详解

函数原型:

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

关键参数说明:

  • kernel_size:最大的窗口大小
  • stride:窗口的步幅,默认值为kernel_size
  • padding:填充值,默认为0
  • dilation:控制窗口中元素步幅的参数

⭐4. 关于卷积层、池化层的计算:

下面的网络数据shape变化过程为:

3, 32, 32(输入数据)
-> 64, 30, 30(经过卷积层1)-> 64, 15, 15(经过池化层1)
-> 64, 13, 13(经过卷积层2)-> 64, 6, 6(经过池化层2)
-> 128, 4, 4(经过卷积层3) -> 128, 2, 2(经过池化层3)
-> 512-> 256-> num_classes(10)(最后返回的是要进行分类的数量)

代码

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(kernel_size=2) 
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool3 = nn.MaxPool2d(kernel_size=2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(512, 256)          
        self.fc2 = nn.Linear(256, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))
        
        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

加载并打印模型

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)

在这里插入图片描述

进行编译

进行编译操作
设置参数

#进行编译
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

模型训练

epoch设置为10,实现提高精度

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        #反向传播三部曲
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss
def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

正式训练

epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

在这里插入图片描述

结果可视化

使用准确度和损失值进行结果的优良进行分析

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

请添加图片描述

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。