您现在的位置是:首页 >技术教程 >分类预测 | MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络数据分类预测网站首页技术教程

分类预测 | MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络数据分类预测

机器学习之心 2023-06-21 12:00:03
简介分类预测 | MATLAB实现WOA-CNN鲸鱼算法优化卷积神经网络数据分类预测

分类预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆网络数据分类预测

分类效果

1
2
3
4
5

基本描述

1.Matlab实现WOA-CNN多特征分类预测,多特征输入模型,运行环境Matlab2018b及以上;
2.基于鲸鱼算法(WOA)优化卷积神经网络(CNN)分类预测,优化参数为,学习率,批处理,正则化参数;
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。

程序设计

%%  优化算法参数设置
SearchAgents_no = 3;                  % 数量
Max_iteration = 5;                    % 最大迭代次数
dim = 3;                              % 优化参数个数

 
%% 建立模型
lgraph = [
 
 convolution2dLayer([1, 1], 32)  % 卷积核大小 3*1 生成32张特征图
 batchNormalizationLayer         % 批归一化层
 reluLayer                       % Relu激活层

 dropoutLayer(0.2)               % Dropout层
 fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层
 softmaxLayer("Name", "softmax")                                  % softmax激活层
 classificationLayer("Name", "classification")];                  % 分类层




%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 10,...                 % 最大训练次数 
    'MiniBatchSize',best_hd, ...
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过800次训练后 学习率
%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 
%_________________________________________________________________________%
%  Whale Optimization Algorithm (WOA) source codes demo 1.0               
% The Whale Optimization Algorithm
function [Best_Cost,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj)

% initialize position vector and score for the leader
Best_pos=zeros(1,dim);
Best_Cost=inf; %change this to -inf for maximization problems


%Initialize the positions of search agents
Positions=initialization(pop,dim,ub,lb);

curve=zeros(1,Max_iter);

t=0;% Loop counter

% Main loop
while t<Max_iter
    for i=1:size(Positions,1)
        
        % Return back the search agents that go beyond the boundaries of the search space
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        
        % Calculate objective function for each search agent
        fitness=fobj(Positions(i,:));
        
        % Update the leader
        if fitness<Best_Cost % Change this to > for maximization problem
            Best_Cost=fitness; % Update alpha
            Best_pos=Positions(i,:);
        end
        
    end
    
    a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)
    
    % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)
    a2=-1+t*((-1)/Max_iter);
    
    % Update the Position of search agents 
    for i=1:size(Positions,1)
        r1=rand(); % r1 is a random number in [0,1]
        r2=rand(); % r2 is a random number in [0,1]
        
        A=2*a*r1-a;  % Eq. (2.3) in the paper
        C=2*r2;      % Eq. (2.4) in the paper
        
        
        b=1;               %  parameters in Eq. (2.5)
        l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)
        
        p = rand();        % p in Eq. (2.6)
        
        for j=1:size(Positions,2)
            
            if p<0.5   
                if abs(A)>=1
                    rand_leader_index = floor(pop*rand()+1);
                    X_rand = Positions(rand_leader_index, :);
                    D_X_rand=abs(C*X_rand(j)-Positions(i,j)); % Eq. (2.7)
                    Positions(i,j)=X_rand(j)-A*D_X_rand;      % Eq. (2.8)
                    
                elseif abs(A)<1
                    D_Leader=abs(C*Best_pos(j)-Positions(i,j)); % Eq. (2.1)
                    Positions(i,j)=Best_pos(j)-A*D_Leader;      % Eq. (2.2)
                end
                
            elseif p>=0.5
              
                distance2Leader=abs(Best_pos(j)-Positions(i,j));
                % Eq. (2.5)
                Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Best_pos(j);
                
            end
            
        end
    end
    t=t+1;
    curve(t)=Best_Cost;
    [t Best_Cost]
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。