您现在的位置是:首页 >技术杂谈 >『C++』异常详解网站首页技术杂谈
『C++』异常详解
「前言」文章是关于C++异常方面,下面开始讲解
「归属专栏」C嘎嘎
「笔者」枫叶先生(fy)
「座右铭」前行路上修真我
「枫叶先生有点文青病」
「每篇一句」
少年的肩膀,就该这样才对嘛,
什么都不要急,
先挑起清风明月、杨柳依依和草长莺飞,
少年郎的肩头,
本就应当满是美好的事物啊。
——烽火戏诸侯《剑来》
目录
一、C语言传统的处理错误的方式
C语言传统的错误处理机制:
- 终止程序:如 assert,缺陷:用户难以接受。如发生内存错误,除0错误时就会终止程序。
- 返回错误码:存在缺陷,需要程序员自己去查找对应的错误。如系统的很多库的接口函数都是通过把错误码放到 errno 中,表示错误,错误提示不明显
tips:assert在 release版本下会失效
实际中C语言基本都是使用返回错误码的方式处理错误,部分情况下使用终止程序处理非常严重的错误
二、C++异常概念
异常是一种处理错误的方式,当一个函数发现自己无法处理的错误时就可以抛出异常,让函数的直接或间接的调用者处理这个错误,使用异常处理错误并不会终止程序
关于异常的关键字介绍如下:
- throw: 当问题出现时,程序会抛出一个异常。这是通过使用 throw 关键字来完成的
- try: try 块中的代码标识将被激活的特定异常,它后面通常跟着一个或多个 catch 块
- catch: 在想要处理问题的地方,通过异常处理程序捕获异常。catch 关键字用于捕获异常,可以有多个 catch 进行捕获
如果有一个块抛出一个异常,捕获异常的方法会使用 try 和 catch 关键字。try 块中放置可能抛出异常的代码,try 块中的代码被称为保护代码。
使用 try/catch 语句的语法如下所示:
try
{
// 保护的标识代码
}
catch (ExceptionName e1)
{
// catch 块
}
catch (ExceptionName e2)
{
// catch 块
}
catch (ExceptionName eN)
{
// catch 块
}
//catch...
三、异常的使用
3.1 异常的抛出和捕获
异常的抛出和匹配原则:
- 异常是通过抛出对象而引发的,该对象的类型决定了应该激活哪个catch的处理代码。
- 被选中的处理代码是调用链中与该对象类型匹配且离抛出异常位置最近的那一个。
- 抛出异常对象后,会生成一个异常对象的拷贝,因为抛出的异常对象可能是一个临时对象,所以会生成一个拷贝对象,这个拷贝的临时对象会在被catch以后销毁。(这里的处理类似于函数的传值返回)
- catch(...) 可以捕获任意类型的异常,问题是不知道异常错误是什么。
- 实际中抛出和捕获的匹配原则有个例外,并不都是类型完全匹配,可以抛出的派生类对象,使用基类捕获,这个在实际中非常实用,我们后面会详细讲解这个
下面进行测试
(1)对于第一点: 异常是通过抛出对象而引发的,该对象的类型决定了应该激活哪个 catch 的处理代码
测试代码,抛异常时:在下面抛出的对象是一个字符串,它储存在常量区,对应的捕获 catch 的类型就是 const char*,不能是 char*,如果是 char* 会出现权限放大
double Division(int a, int b)
{
// 当b == 0时抛出异常
if (b == 0)
throw "Division by zero condition!";
else
return ((double)a / (double)b);
}
void Func()
{
int len, time;
cin >> len >> time;
cout << Division(len, time) << endl;
}
int main()
{
try
{
// try 块中放置可能抛出异常的代码
Func();
}
catch (const char* errmsg)// catch 关键字用于捕获异常
{
cout << errmsg << endl;
}
return 0;
}
运行,输入10 2,异常代码不执行,程序正常运行
运行,输入 10 0, 发生除0错误,抛出异常,catch进行捕获异常,catch 选项类型匹配则执行 catch 里面的代码,打印错误信息,程序正常结束;否则不执行,直接终止程序
修改 const char* errmsg 为 char* errmsg,运行,输入 10 0,发生除0错误,抛出异常,catch 选项类型不匹配,捕获失败,程序终止
(2)catch(...) 可以捕获任意类型的异常
在 catch 的后面都加上 catch(...),如果出现 catch 选项类型不匹配,都会直接走 catch(...) 的语句块,这也解决了 catch 选项类型不匹配的问题,程序会正常运行,不会发生终止,因为走到了 catch(...) 的语句块
(3)如果存在多个 try/catch 嵌套, catch 选项类型都匹配,被选中的处理代码是调用链中与该对象类型匹配且离抛出异常位置最近的那一个
测试代码
int main()
{
try
{
// try 块中放置可能抛出异常的代码
try
{
Func();
}
catch (const char* errmsg)//类型匹配,就近原则
{
cout << "1234" << errmsg << endl;
}
}
catch (const char* errmsg)//类型匹配
{
cout << errmsg << endl;
}
catch (...)
{
cout << "Unkown Exception" << endl;
}
return 0;
}
运行输入 10 0,发生除0错误,使用了离抛出异常位置最近的那一个 catch 语句块
在函数调用链中异常栈展开匹配原则
- 首先检查 throw 本身是否在 try块内部,如果是再查找匹配的 catch 语句。如果有匹配的,则调到 catch 的地方进行处理。
- 没有匹配的 catch 则退出当前函数栈,继续在调用函数的栈中进行查找匹配的 catch。
- 如果到达main函数的栈,依旧没有匹配的,则终止程序。上述这个沿着调用链查找匹配的catch子句的过程称为栈展开。所以实际中我们最后都要加一个 catch(...) 捕获任意类型的异常,否则当有异常没捕获,程序就会直接终止。
- 找到匹配的 catch 子句并处理以后,会继续沿着 catch 子句后面继续执行
比如下面的代码中main函数中调用了func3,func3中调用了func2,func2中调用了func1,在 func1 中抛出了一个 string 类型的异常对象
void func1()
{
throw string("这是一个异常");
}
void func2()
{
func1();
}
void func3()
{
func2();
}
int main()
{
try
{
func3();
}
catch (const string& s)
{
cout << "错误描述:" << s << endl;
}
catch (...)
{
cout << "Unkown Exception:未知异常" << endl;
}
return 0;
}
当func1中的异常被抛出后:
- 首先会检查throw本身是否在 try 块内部,这里由于 throw 不在 try 块内部,因此会退出 func1 所在的函数栈,继续在上一个调用函数栈中进行查找,即 func2 所在的函数栈。
- 由于 func2 中也没有匹配的 catch,因此会继续在上一个调用函数栈中进行查找,即func3所在的函数栈。
- func3 中也没有匹配的 catch,于是就会在 main 所在的函数栈中进行查找,最终在 main 函数栈中找到了匹配的 catch。
- 这时就会跳到 main 函数中对应的 catch 块中执行对应的代码块,执行完后继续执行该代码块后续的代码
上述这个沿着调用链查找匹配的catch子句的过程称为栈展开。在实际中我们最后都要加一个 catch(...) 捕获任意类型的异常,否则当有异常没捕获时,程序就会直接终止
3.2 异常的重新抛出
有可能单个的catch不能完全处理一个异常,在进行一些校正处理以后,希望再交给更外层的调用链函数来处理,catch则可以通过重新抛出将异常传递给更上层的函数进行处理
测试代码
void func1()
{
try
{
throw string("除0异常");
}
catch(const string& s)
{
//打印提示信息,简单处理
cout << s << endl;
// 重新抛出,让外层处理错误
throw;
}
}
int main()
{
try
{
func1();
}
catch (const string& s)
{
cout << "进行处理..." << s << endl;
}
catch (...)
{
cout << "Unkown Exception:未知异常" << endl;
}
return 0;
}
运行结果,异常抛给了外层,外层进行处理
直接让外层捕获异常进行处理可能会引发一些问题。比如:
void func1()
{
//...
throw string("除0异常");
}
void func2()
{
int* array = new int[10];
func1();
//...
delete[] array;
cout << "内存已释放" << endl;
}
int main()
{
try
{
func1();
}
catch (const string& s)
{
cout << s << ", 进行处理..." << endl;
}
catch (...)
{
cout << "Unkown Exception:未知异常" << endl;
}
return 0;
}
func2中通过 new操作符申请了一块内存空间,并且在 func2 最后通过 delete 对该空间进行了释放,但由于 func2 中途调用的 func1 内部抛出了一个异常,这时会直接跳转到main函数中的 catch 块执行对应的异常处理程序,这时就导致func2中申请的内存块没有得到释放,造成了内存泄露
运行结果,内存没有释放
这时可以在 func2 中先对 func1 抛出的异常进行捕获,捕获后先将申请到的内存释放再将异常重新抛出,这时就避免了内存泄露
修改代码
void func2()
{
int* array = new int[10];
try
{
func1();
}
catch (...)
{
cout << "delete []" << array << endl;
delete[] array;
throw;
}
//...
delete[] array;
cout << "array内存已释放" << endl;
}
运行结果, 内存释放后才将异常重新抛出处理
3.3异常安全
将抛异常导致的安全问题叫做异常安全问题,对于异常安全问题下面给出几点建议:
- 构造函数完成对象的构造和初始化,最好不要在构造函数中抛出异常,否则可能导致对象不完整或没有完全初始化
- 析构函数主要完成资源的清理,最好不要在析构函数内抛出异常,否则可能导致资源泄漏(内存泄漏、句柄未关闭等)
- C++中异常经常会导致资源泄漏的问题,比如在new和delete中抛出了异常,导致内存泄漏,在 lock 和 unlock 之间抛出了异常导致死锁,C++经常使用 RAII 来解决以上问题,关于 RAII,智能指针这节进行讲解
3.4 异常规范
异常规格说明的目的是为了让函数使用者知道该函数可能抛出的异常有哪些。
这是 C++98 的做法:
- 可以在函数的后面接throw(类型),列出这个函数可能抛掷的所有异常类型
- 函数的后面接throw(),表示函数不抛异常
- 若无异常接口声明,则此函数可以抛掷任何类型的异常
- 但是这些规范写法复杂,而且这些规范没有强制,最后形同虚设
比如:
// 这里表示这个函数会抛出A/B/C/D中的某种类型的异常
void fun() throw(A,B,C,D);
// 这里表示这个函数只会抛出bad_alloc的异常
void* operator new (std::size_t size) throw (std::bad_alloc);
// 这里表示这个函数不会抛出异常
void* operator delete (std::size_t size, void* ptr) throw();
C++11 的做法
- C++11 中新增的 noexcept,表示不会抛异常
- 这是对 C++98 的异常规范复杂写法的简化
例如:
// C++11 中新增的noexcept,表示不会抛异常
thread() noexcept;
thread (thread&& x) noexcept;
四、自定义异常体系
实际使用中很多公司都会自定义自己的异常体系进行规范的异常管理,进行异常模块划分,因为一个项目中如果大家随意抛异常,那么外层的调用者基本就没办法玩了,所以实际中都会定义一套继承的规范体系。这样大家抛出的都是继承的派生类对象,捕获一个基类就可以了
最基础的异常类至少需要包含错误编号和错误描述两个成员变量
比如,有以下异常基类:
// 服务器开发中通常使用的异常继承体系
class Exception
{
public:
Exception(const string& errmsg, int id)
:_errmsg(errmsg)
, _id(id)
{}
virtual string what() const
{
return _errmsg;
}
protected:
string _errmsg;
int _id;
};
其他模块如果要对这个异常类进行扩展,必须继承这个基础的异常类,可以在继承后的异常类中按需添加某些成员变量,或是对继承下来的虚函数what进行重写,使其能告知程序员更多的异常信息
例如:
class SqlException : public Exception
{
public:
SqlException(const string& errmsg, int id, const string& sql)
:Exception(errmsg, id)
, _sql(sql)
{}
virtual string what() const
{
string str = "SqlException:";
str += _errmsg;
str += "->";
str += _sql;
return str;
}
private:
const string _sql;
};
class CacheException : public Exception
{
public:
CacheException(const string& errmsg, int id)
:Exception(errmsg, id)
{}
virtual string what() const
{
string str = "CacheException:";
str += _errmsg;
return str;
}
};
class HttpServerException : public Exception
{
public:
HttpServerException(const string& errmsg, int id, const string& type)
:Exception(errmsg, id)
, _type(type)
{}
virtual string what() const
{
string str = "HttpServerException:";
str += _type;
str += ":";
str += _errmsg;
return str;
}
private:
const string _type;
};
void SQLMgr()
{
srand(time(0));
if (rand() % 7 == 0)
{
throw SqlException("权限不足", 100, "select * from name = '张三'");
}
//throw "xxxxxx";
}
void CacheMgr()
{
srand(time(0));
if (rand() % 5 == 0)
{
throw CacheException("权限不足", 100);
}
else if (rand() % 6 == 0)
{
throw CacheException("数据不存在", 101);
}
SQLMgr();
}
void HttpServer()
{
// ...
srand(time(0));
if (rand() % 3 == 0)
{
throw HttpServerException("请求资源不存在", 100, "get");
}
else if (rand() % 4 == 0)
{
throw HttpServerException("权限不足", 101, "post");
}
CacheMgr();
}
下面进行测试
#include <windows.h>
int main()
{
while (1)
{
Sleep(1000);
try {
HttpServer();
}
catch (const Exception& e) // 这里捕获父类对象就可以
{
// 多态
cout << e.what() << endl;
}
catch (...)
{
cout << "Unkown Exception" << endl;
}
}
return 0;
}
测试运行
五、C++标准库的异常体系
C++ 提供了一系列标准的异常,定义在 std::exception 中,我们可以在程序中使用这些标准的异常。它们是以父子类层次结构组织起来的,如下所示
下表是对上面继承体系中出现的每个异常的说明:
说明:实际中我们可以可以去继承 exception 类实现自己的异常类。但是实际中很多公司像上面一样自己定义一套异常继承体系,因为C++标准库设计的不够好用
其他就不过多介绍了
六、异常的优缺点
C++异常的优点:
- 异常对象定义好了,相比错误码的方式可以清晰准确的展示出错误的各种信息,甚至可以包含堆栈调用的信息,这样可以帮助更好的定位程序的bug。
- 返回错误码的传统方式有个很大的问题就是,在函数调用链中,深层的函数返回了错误,那么我们得层层返回错误,最外层才能拿到错误,具体看下面的详细解释。
- 很多的第三方库都包含异常,比如 boost、gtest、gmock 等等常用的库,那么我们使用它们也需要使用异常。
- 部分函数使用异常更好处理,比如构造函数没有返回值,不方便使用错误码方式处理。比如 T& operator 这样的函数,如果pos越界了只能使用异常或者终止程序处理,没办法通过返回值表示错误。
C++异常的缺点:
- 异常会导致程序的执行流乱跳,并且非常的混乱,并且是运行时出错抛异常就会乱跳。这会导致我们跟踪调试时以及分析程序时,比较困难。
- 异常会有一些性能的开销。当然在现代硬件速度很快的情况下,这个影响基本忽略不计。
- C++没有垃圾回收机制,资源需要自己管理。有了异常非常容易导致内存泄漏、死锁等异常安全问题。这个需要使用RAII来处理资源的管理问题。学习成本较高。
- C++标准库的异常体系定义得不好,导致大家各自定义各自的异常体系,非常的混乱。
- 异常尽量规范使用,否则后果不堪设想,随意抛异常,外层捕获的用户苦不堪言。所以异常规范有两点:一、抛出异常类型都继承自一个基类。二、函数是否抛异常、抛什么异常,都使用 fun()noexcept 的方式规范化。
总结:异常总体而言,利大于弊,所以工程中我们还是鼓励使用异常的。另外 OO 的语言基本都是用异常处理错误,这也可以看出这是大势所趋。
--------------------- END ----------------------
「 作者 」 枫叶先生
「 更新 」 2023.4.23
「 声明 」 余之才疏学浅,故所撰文疏漏难免,
或有谬误或不准确之处,敬请读者批评指正。