您现在的位置是:首页 >技术杂谈 >LC-1027. 最长等差数列(动态规划)网站首页技术杂谈

LC-1027. 最长等差数列(动态规划)

Miraclo_acc 2023-06-04 08:00:02
简介LC-1027. 最长等差数列(动态规划)

1027. 最长等差数列

难度中等237

给你一个整数数组 nums,返回 nums 中最长等差子序列的长度

回想一下,nums 的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik] ,且 0 <= i1 < i2 < ... < ik <= nums.length - 1。并且如果 seq[i+1] - seq[i]( 0 <= i < seq.length - 1) 的值都相同,那么序列 seq 是等差的。

示例 1:

输入:nums = [3,6,9,12]
输出:4
解释: 
整个数组是公差为 3 的等差数列。

示例 2:

输入:nums = [9,4,7,2,10]
输出:3
解释:
最长的等差子序列是 [4,7,10]。

示例 3:

输入:nums = [20,1,15,3,10,5,8]
输出:4
解释:
最长的等差子序列是 [20,15,10,5]。

提示:

  • 2 <= nums.length <= 1000
  • 0 <= nums[i] <= 500

题解:https://leetcode.cn/problems/longest-arithmetic-subsequence/solution/zui-chang-deng-chai-shu-lie-by-zai-jian-u21ci/

状态定义:dp[i][d]: 表示以数组下标 i 处的元素结尾、公差为 d 的等差数列的最大长度。

等差数列至少包含 2 个数,也就是说 1 个数不能构成等差数列,任意 2 个元素都能构成长度为 2 的等差数列。

假设现在有一个子序列元素 x , y,它是一个等差数列, 公差为 d,考虑 z 能否加入到 y 后面?

如果 z 能加入,意味着 z-y=y-x, 还可以是 z-d=y

我们是从小到大推导 dp 的,我们在计算 dp[k][] 时,dp[0…k-1][] 已经计算过了,那么 dp[k][] 能否从子问题推导过来呐? 可以的。

  • dp[i][d] = max(dp[i][d], dp[j][d] + 1), 0 <= j < i
class Solution {
    /**
        dp[i][d]:表示第i个数,与前面的数以差为d时,能构成的最长等差数列长度。
        dp[i][d] = max(dp[i][d], dp[j][d] + 1), 0 <= j < i
     */
    public int longestArithSeqLength(int[] nums) {
        int n = nums.length;
        int ans = 0;
        int[][] dp = new int[n][1010];
        for(int i = 0; i < n; i++) Arrays.fill(dp[i], 1);
        for(int i = 0; i < n; i++){
            for(int j = i-1; j >= 0; j--){
                // 表示 nums[i] 与 nums[j] 以差为 d 构成等差数列
                int d = nums[i] - nums[j] + 500;// 统一加偏移量,使下标非负
                // dp[i][d]表示:nums[i]以差为d能与前面的数构成的等差数列的长度
                dp[i][d] = Math.max(dp[i][d], dp[j][d] + 1);
                ans = Math.max(ans, dp[i][d]);
            }
        }
        return ans;
    }
}

将初始化后移:

状态转移方程有了,现在我们考虑 basecase,也就是初始化的问题,我们需要两层 for 循环给所有 dp[i][j]初始化为 1

  • 初始化完了就可进行计算再返回结果,另外比较特殊的是,由于是统一初始化成相同的值,“地位平等”,使得也可以不用先初始化,在没有显式的初始化的基础上,算完之后,再将结果 +1,也能得到相同的结果,并且后者效率高于前者(后者相较于前者少了 2 层 for 循环的时间)
class Solution {
    /**
        dp[i][d]:表示第i个数,与前面的数以差为d时,能构成的最长等差数列长度。
        dp[i][d] = max(dp[i][d], dp[j][d] + 1), 0 <= j < i
     */
    public int longestArithSeqLength(int[] nums) {
        int n = nums.length;
        int ans = 0;
        int[][] dp = new int[n][1010];
        for(int i = 0; i < n; i++){
            for(int j = i-1; j >= 0; j--){
                // 表示 nums[i] 与 nums[j] 以差为 d 构成等差数列
                int d = nums[i] - nums[j] + 500;
                // dp[i][d]表示:nums[i]以差为d能与前面的数构成的等差数列的长度
                dp[i][d] = Math.max(dp[i][d], dp[j][d] + 1);
                ans = Math.max(ans, dp[i][d]);
            }
        }
        return ans + 1;
    }
}
风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。