您现在的位置是:首页 >技术教程 >黑马在线教育数仓实战7网站首页技术教程

黑马在线教育数仓实战7

Amazingmonkeys 2023-06-04 00:00:03
简介黑马在线教育数仓实战7

1. hive的相关的优化

1.1 hive的相关的函数(补充说明)

  • if函数:

    • 作用: 用于进行逻辑判断操作
    • 语法:
if(条件, true返回信息,false返回信息)
    • 注意: if函数支持嵌套使用
  • nvl函数:

    • 作用: null值替换函数
    • 格式:
nvl(T value, T default_value)
  • COALESCE函数

    • 作用: 非空查找函数:
    • 格式:
coalesce(值1,值2,值3...)
    • 说明: 从第一个值开始判断, 找到第一个不为null的值, 将其返回, 如果都为null,返回null
  • CASE WHEN THEN 函数:

    • 格式1:
case 字段 when 条件 then 值1 when 条件 then 值2 .. else 值3 end
    • 格式2:
case when 条件 then 值1 when 条件2 then 值2 .. else 值3 end
  • isnull() | isnotnull() 函数

    • 作用:
      • isnull() 判断是否为null, 如果为null返回true, 否则返回false
      • isnotnull() 判断是否不为null, 如果不为null, 返回true, 如果为null 返回false

1.2 hive的相关的优化

  • hive的并行优化
  1. 并行编译 说明: hive在同一时刻只能编译一个会话中SQL, 如果有多个会话一起来执行SQL, 此时出现排队的情况, 只有当这一个会话中SQL全部编译后, 才能编译另一个会话的SQL, 导致执行效率变慢 解决方案:

 hive.driver.parallel.compilation 是否开启并行编译 设置为true   
 hive.driver.parallel.compilation.global.limit 最大允许同时有多少个SQL一起编译 设置为0表示无限制

说明:

这两项可以建议直接在CM的hive配置窗口上进行永久配置 (通用配置)

2. 并行执行: 说明: 在运行一个SQL的时候, 这个SQL形成的执行计划中, 可能会被拆分为多个阶段, 当各个阶段之间没有依赖关系的时候, 可以尝试让多个阶段同时运行, 从而提升运行的效率, 这就是并行执行

配置方案:

 set hive.exec.parallel=true;  是否开启并行执行
 set hive.exec.parallel.thread.number=16;  最大允许并行执行的数量

关于并行优化, 必须要求服务器有资源, 如果没有资源, 及时满足并行的条件, 也不会执行

hive的小文件合并

思考: 小文件有什么影响呢? HDFS角度: 每一个小文件, 都会有一份元数据, 当小文件过多后, 会导致出现大量的元数据存储namenode的内存中, 从而导致内存使用率增大, 一旦namenode内存存满了, 即使datanode依然有空间, 也是无法存储的

MR角度: 在运行MR的时候, 每一个文件至少是一个文件切片, 也就意味至少需要运行一个mapTask. 当小文件过多后, 就会导致产生更多的mapTask, 而每一个mapTask只处理极少的数据, 导致资源被大量占用, 运行的时间都没有申请资源时间长 假设: 150M 10M 8M 300M 12M 6M 请问会运行几个mapTask: 9个

从hive角度如何解决小文件过多的问题呢? 在执行SQL的时候, 输出的文件数量尽量变得少一些

hive.merge.mapfiles : 是否开启map端小文件合并 (适用于MR只有map没有reduce, map输出结果就是最终结果) hive.merge.mapredfiles : 是否开启reduce端小文件合并操作 hive.merge.size.per.task: 合并后输出文件的最大值 ,默认是128M hive.merge.smallfiles.avgsize: 判断输出各个文件平均大小, 当这个大小小于设置值, 认为出现了小文件问题,需要进行合并操作

比如说: 设置合并文件后, 输出最大值128M, 设置平均值为 50M 假设一个MR输出一下几个文件: 1M,10M,5M,3M,150M,80M,2M 平均值:35.xxx

    发现输出的多个文件的平均值比设定的平均值要小, 说明出现小文件的问题, 需要进行合并, 此时会合并结果为:
    128M,123M

矢量化查询

说明: 让hive在读取数据的时候, 一批一批的读取, 默认是一条一条的读, 一条条的处理, 开启矢量化查询后, 变成一批一批读取, 一批一批的处理 前提条件: 表的文件存储格式必须为ORC

如何开启呢?

set hive.vectorized.execution.enabled=true;

读取零拷贝

说明: 在hive读取数据的时候, 只需要读取跟SQL相关的列的数据即可, 不使用列, 不进行读取, 从而减少读取数据, 提升效率
提前条件: 表的文件存储格式必须为ORC

如何开启:

set hive.exec.orc.zerocopy=true;


    示例: A表有 a,b,c,d,e 五个字段
        select a,b,b  from A where b=xxx and c between xx and xxx;
        发现SQL中没有使用d和e两个字段, 如果开启读取零拷贝, 在读取数据的时候, 就不会将d和e这两个字段读取到内存中

1.3 数据倾斜的优化

思考: 什么是数据倾斜呢?

    在运行过程中,有多个reduce, 每一个reduce拿到的数据不是很均匀, 导致其中某一个或者某几个reduce拿到数据量远远大于其他的reduce拿到数据量, 此时认为出现了数据倾斜问题

思考:数据倾斜会导致问题?

1) 执行效率下降(整个执行时间, 就看最后一个reduce结束时间)
2) 由于其中某几个reduce长时间运行, 资源长期被占用, 一旦超时, YARN强制回收资源, 导致运行失败
3) 导致节点出现宕机问题
.... 

思考: 在执行什么SQL的时候, 会出现多个reduce的情况呢?

1) 多表join的时候
2) 执行group by的时候
3) 执行分桶操作(跟数据倾斜没太大关系) 

思考: 发生数据倾斜的情况:

1) 执行多表查询的时候
2) 执行group by的时候 

如何解决数据倾斜的问题呢?

1.3.1 group by 数据倾斜

解决方案:

方案一:  采用combiner的方式来解决 (在map端提前聚合)
    核心: 在每一个mapTask进行提前聚合操作, 将聚合之后结果, 发送给reduce中, 完成最终的聚合, 从而减少从map到reduce的数据量, 减轻数据倾斜压力
    配置: 
        set hive.map.aggr=true;  开启map端提前聚合操作(combiner)

方案二:  负载均衡解决方案  (大combiner)
    核心: 采用两个MR来解决, 第一个MR负责将数据均匀落在不同reduce上, 进行聚合统计操作, 形成一个局部的结果, 在运行第二个MR读取第一个MR的局部结果, 按照相同key发往同一个reduce的方案, 完成最终聚合统计操作

    配置: 
        set hive.groupby.skewindata=true;

    注意:
        一旦使用方案二, hive不支持多列上的采用多次distinct去重操作, 一旦使用, 就会报错
            错误内容: DISTINCT on different columns notsupported with skew in data.
        示例: 
            (1) SELECT count(DISTINCT uid) FROM log
            (2) SELECT ip, count(DISTINCT uid) FROM log GROUP BY ip
            (3) SELECT ip, count(DISTINCT uid, uname) FROMlog GROUP BY ip
            (4) SELECT ip, count(DISTINCT uid), count(DISTINCT uname) FROMlog GROUP BY ip
            其中: 1,2,3 是可以正常执行的, 4会报错

1.3.2 join的数据倾斜

解决方案一 : 
    通过采用 map join,bucket map join, SMB map join
    方案: 将reduce端join的操作, 移植到map端进行join即可, 直接将倾斜排除即可, 因为在map端基本不会有倾斜问题

但是: 不管是map join, 还是 bucket map join以及SMB map join在使用的时候 都必须满足相关的条件, 但是很多时候, 我们的环境无法满足这些条件, 那么也就意味无法使用这些解决方案

解决方案二:
    思路: 将那些容易产生倾斜的key的值, 从这个环境中, 排除掉, 这样自然就没有倾斜问题, 讲这些倾斜的数据单独找一个MR来处理即可

    处理方案:  
        编译期解决方案:
            配置:
                set hive.optimize.skewjoin.compiletime=true;
            建表:
                CREATE TABLE list_bucket_single (key STRING, value STRING)
                -- 倾斜的字段和需要拆分的key值
                SKEWED BY (key) ON (1,5,6)
                --  为倾斜值创建子目录单独存放
                [STORED AS DIRECTORIES];
            说明:
                当明确知道表中那些key的值有倾斜问题, 一般擦用编译期解决, 在建表的时候, 提前设置好对应值有倾斜即可, 这样在执行的时候, hive会直接将这些倾斜的key的值从这个MR排除掉, 单独找一个MR来处理即可

        运行期解决方案:
            配置: 
                set hive.optimize.skewjoin=true; 是否开启运行期倾斜解决join
                set hive.skewjoin.key=100000; 当key出现多少个的时候, 认为有倾斜

            说明: 
                在执行的过程中, hive会记录每一个key出现的次数, 当出现次数达到设置的阈值后, 认为这个key有倾斜的问题, 直接将这个key对应数据排除掉, 单独找一个MR来处理即可

union all相关优化点:

配置项:
    set hive.optimize.union.remove=true;
作用:
    此项配置减少对Union all子查询中间结果的二次读写

说明:
    此项配置一般和join的数据倾斜组合使用

建议:
    如果提前知道表中有那些key有倾斜, 直接使用编译期即可
    如果仅知道一部分, 对于其他key无法保证, 建议编译期和运行期同时开启

1.3.3 如何感知有数据倾斜

方案一: 通过查看 job history历史日志(19888) 适用于MR已经执行完成了

方案二: 在运行过程中如何查看是否有倾斜呢? 借助与HUE查看

 

1.3.4 关联优化器(共享shuffle)

配置:
    set hive.optimize.correlation=true;

说明:
    在Hive的一些复杂关联查询中,可能同时还包含有group by等能够触发shuffle的操作,有些时候shuffle操作是可以共享的,通过关联优化器选项,可以尽量减少复杂查询中的shuffle,从而提升性能。


比如: 
    select  id,max(id)  from itcast_ods.web_chat_ems group by id;
    union all
    select  id,min(id)  from itcast_ods.web_chat_ems group by id;

1.4 总结说明

常开项: 
set hive.exec.parallel=true;  是否开启并行执行
set hive.exec.parallel.thread.number=16;  最大允许并行执行的数量
set hive.vectorized.execution.enabled=true; 矢量化查询
set hive.exec.orc.zerocopy=true; 读取零拷贝
set hive.optimize.correlation=true; 关联优化器

针对性开启:
set hive.map.aggr=true; 开启 group by combiner数据倾斜方案
set hive.groupby.skewindata=true;开启groupby 负载均衡优化

set hive.optimize.skewjoin.compiletime=true; join的编译期优化

set hive.optimize.skewjoin=true; 是否开启运行期倾斜解决join
set hive.skewjoin.key=100000; 当key出现多少个的时候, 认为有倾斜

set hive.optimize.union.remove=true; union all优化
风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。