您现在的位置是:首页 >其他 >看完这篇文章你就彻底懂啦{保姆级讲解}-----(LeetCode刷题203.707.206翻转链表) 2023.4.21网站首页其他

看完这篇文章你就彻底懂啦{保姆级讲解}-----(LeetCode刷题203.707.206翻转链表) 2023.4.21

Enoch0813 2023-06-01 04:00:02
简介看完这篇文章你就彻底懂啦{保姆级讲解}-----(LeetCode刷题203.707.206翻转链表) 2023.4.21

前言

本文章一部分内容参考于《代码随想录》----如有侵权请联系作者删除即可,撰写本文章主要目的在于记录自己学习体会并分享给大家,全篇并不仅仅是复制粘贴,更多的是加入了自己的思考,希望读完此篇文章能真正帮助到您!!!

算法题(LeetCode刷题203移除链表元素)—(保姆级别讲解)

力扣题目链接

在这里插入图片描述
关于这个算法思想,我在之前的文章中已经提过,在这里不再赘述。

链表删除、清空和销毁-----2021-08-30

算法题(LeetCode刷题707.设计链表)—(保姆级别讲解)

力扣题目链接

在这里插入图片描述
关于这个算法思想,我在之前的文章中已经提过,在这里不再赘述。

链表初始化、插入、遍历功能实现----2021-08-17

链表删除、清空和销毁-----2021-08-30

代码参考:

class MyLinkedList {
public:
    // 定义链表节点结构体
    struct LinkedNode {
        int val;
        LinkedNode* next;
        LinkedNode(int val):val(val), next(nullptr){}
    };

    // 初始化链表
    MyLinkedList() {
        _dummyHead = new LinkedNode(0); // 这里定义的头结点 是一个虚拟头结点,而不是真正的链表头结点
        _size = 0;
    }

    // 获取到第index个节点数值,如果index是非法数值直接返回-1, 注意index是从0开始的,第0个节点就是头结点
    int get(int index) {
        if (index > (_size - 1) || index < 0) {
            return -1;
        }
        LinkedNode* cur = _dummyHead->next;
        while(index--){ // 如果--index 就会陷入死循环
            cur = cur->next;
        }
        return cur->val;
    }

    // 在链表最前面插入一个节点,插入完成后,新插入的节点为链表的新的头结点
    void addAtHead(int val) {
        LinkedNode* newNode = new LinkedNode(val);
        newNode->next = _dummyHead->next;
        _dummyHead->next = newNode;
        _size++;
    }

    // 在链表最后面添加一个节点
    void addAtTail(int val) {
        LinkedNode* newNode = new LinkedNode(val);
        LinkedNode* cur = _dummyHead;
        while(cur->next != nullptr){
            cur = cur->next;
        }
        cur->next = newNode;
        _size++;
    }

    // 在第index个节点之前插入一个新节点,例如index为0,那么新插入的节点为链表的新头节点。
    // 如果index 等于链表的长度,则说明是新插入的节点为链表的尾结点
    // 如果index大于链表的长度,则返回空
    // 如果index小于0,则在头部插入节点
    void addAtIndex(int index, int val) {

        if(index > _size) return;
        if(index < 0) index = 0;        
        LinkedNode* newNode = new LinkedNode(val);
        LinkedNode* cur = _dummyHead;
        while(index--) {
            cur = cur->next;
        }
        newNode->next = cur->next;
        cur->next = newNode;
        _size++;
    }

    // 删除第index个节点,如果index 大于等于链表的长度,直接return,注意index是从0开始的
    void deleteAtIndex(int index) {
        if (index >= _size || index < 0) {
            return;
        }
        LinkedNode* cur = _dummyHead;
        while(index--) {
            cur = cur ->next;
        }
        LinkedNode* tmp = cur->next;
        cur->next = cur->next->next;
        delete tmp;
        _size--;
    }

    // 打印链表
    void printLinkedList() {
        LinkedNode* cur = _dummyHead;
        while (cur->next != nullptr) {
            cout << cur->next->val << " ";
            cur = cur->next;
        }
        cout << endl;
    }
private:
    int _size;
    LinkedNode* _dummyHead;

};

算法题(LeetCode刷题206.反转链表)—(保姆级别讲解)

力扣题目链接

在这里插入图片描述
在这里插入图片描述

算法思想(重要):

  1. 双指针法
  2. 递归法(从前往后翻转指针)
  3. 递归法(从后往前翻转指针)

双指针法代码:

class Solution {
public:
    ListNode* reverseList(ListNode* head) {
        ListNode* temp; // 保存cur的下一个节点
        ListNode* cur = head;
        ListNode* pre = NULL;
        while(cur) {
            temp = cur->next;  // 保存一下 cur的下一个节点,因为接下来要改变cur->next
            cur->next = pre; // 翻转操作
            // 更新pre 和 cur指针
            pre = cur;
            cur = temp;
        }
        return pre;
    }
};

为了更能让大家了解暴力解法的算法思想,作者特意画了一张图供大家观看!!!

在这里插入图片描述
在这里插入图片描述

递归法(从前往后翻转指针)代码:

class Solution {
public:
    ListNode* reverse(ListNode* pre,ListNode* cur){
        if(cur == NULL) return pre;
        ListNode* temp = cur->next;
        cur->next = pre;
        // 可以和双指针法的代码进行对比,如下递归的写法,其实就是做了这两步
        // pre = cur;
        // cur = temp;
        return reverse(cur,temp);
    }
    ListNode* reverseList(ListNode* head) {
        // 和双指针法初始化是一样的逻辑
        // ListNode* cur = head;
        // ListNode* pre = NULL;
        return reverse(NULL, head);
    }

};

//可以和上面的双指针法代码进行对比参考,代码实现原理一样,这里就不再赘述了。

递归法(从后往前翻转指针)代码:

class Solution {
public:
    ListNode* reverseList(ListNode* head) {
        // 边缘条件判断
        if(head == NULL) return NULL;
        if (head->next == NULL) return head;
        
        // 递归调用,翻转第二个节点开始往后的链表
        ListNode *last = reverseList(head->next);
        // 翻转头节点与第二个节点的指向
        head->next->next = head;
        // 此时的 head 节点为尾节点,next 需要指向 NULL
        head->next = NULL;
        return last;
    }
}; 

为了更能让大家了解暴力解法的算法思想,作者特意画了一张图供大家观看!!!

在这里插入图片描述

结束语

如果觉得这篇文章还不错的话,记得点赞 ,支持下!!!

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。