您现在的位置是:首页 >技术交流 >第R8周:RNN实现阿尔茨海默病诊断(pytorch)网站首页技术交流
第R8周:RNN实现阿尔茨海默病诊断(pytorch)
简介第R8周:RNN实现阿尔茨海默病诊断(pytorch)
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
数据集包含 2,149 名患者的广泛健康信息,每名患者的 ID 范围从 4751 到 6900 不等。该数据集包括人口统计详细信息、生活方式因素、病史、临床测量、认知和功能评估、症状以及阿尔茨海默病的诊断。
一、前期准备工作
1. 设置硬件设备
import numpy as np
import pandas as pd
import torch
from torch import nn
import torch.nn.functional as F
import seaborn as sns
#设置GPU训练,也可以使用CPU
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
2. 导入数据
df = pd.read_csv("alzheimers_disease_data.csv")
# 删除第一列和最后一列
df = df.iloc[:, 1:-1]
df
二、构建数据集
1. 标准化
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
X = df.iloc[:,:-1]
y = df.iloc[:,-1]
# 将每一列特征标准化为标准正太分布,注意,标准化是针对每一列而言的
sc = StandardScaler()
X = sc.fit_transform(X)
2. 划分数据集
X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = 0.1,
random_state = 1)
X_train.shape, y_train.shape
3. 构建数据加载器
from torch.utils.data import TensorDataset, DataLoader
train_dl = DataLoader(TensorDataset(X_train, y_train),
batch_size=64,
shuffle=False)
test_dl = DataLoader(TensorDataset(X_test, y_test),
batch_size=64,
shuffle=False)
三、模型训练
1. 构建模型
class model_rnn(nn.Module):
def __init__(self):
super(model_rnn, self).__init__()
self.rnn0 = nn.RNN(input_size=32, hidden_size=200,
num_layers=1, batch_first=True)
self.fc0 = nn.Linear(200, 50)
self.fc1 = nn.Linear(50, 2)
def forward(self, x):
out, hidden1 = self.rnn0(x)
out = self.fc0(out)
out = self.fc1(out)
return out
model = model_rnn().to(device)
model
2. 定义训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
3. 定义测试函数
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
4. 正式训练模型
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 5e-5 # 学习率
opt = torch.optim.Adam(model.parameters(),lr=learn_rate)
epochs = 50
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 获取当前的学习率
lr = opt.state_dict()['param_groups'][0]['lr']
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
epoch_test_acc*100, epoch_test_loss, lr))
print("="*20, 'Done', "="*20)
四、模型评估
1. Loss与Accuracy图
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 200 #分辨率
from datetime import datetime
current_time = datetime.now() # 获取当前时间
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
五、个人总结
在这个项目中,我实现了一个简单的循环神经网络(RNN)模型,用于处理序列数据。该模型的核心是一个单层的RNN,输入特征维度为32,隐藏层维度为200。RNN的输出通过两个全连接层(fc0和fc1)进行进一步处理,最终输出维度为2,适用于二分类任务。
改进后的代码示例
class model_rnn_improved(nn.Module):
def __init__(self):
super(model_rnn_improved, self).__init__()
self.rnn0 = nn.LSTM(input_size=32, hidden_size=200,
num_layers=2, batch_first=True, bidirectional=True)
self.dropout = nn.Dropout(0.5)
self.ln = nn.LayerNorm(200)
self.fc0 = nn.Sequential(
nn.Linear(400, 100), # 双向LSTM输出维度为hidden_size * 2
nn.ReLU(),
nn.Linear(100, 50)
)
self.fc1 = nn.Linear(50, 2)
def forward(self, x):
out, (hidden, cell) = self.rnn0(x)
out = self.dropout(out)
out = self.ln(out)
out = self.fc0(out)
out = self.fc1(out)
return out
model = model_rnn_improved().to(device)
model
使用更强大的循环单元(如LSTM或GRU)。
增加模型的深度和复杂度。
引入正则化技术(如Dropout和Layer Normalization)。
风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。