您现在的位置是:首页 >其他 >人工智能-音乐创作(变分自编码器(VAE)、生成对抗网络(GAN)和Transformer架构)网站首页其他

人工智能-音乐创作(变分自编码器(VAE)、生成对抗网络(GAN)和Transformer架构)

小赖同学啊 2025-02-12 00:01:04
简介人工智能-音乐创作(变分自编码器(VAE)、生成对抗网络(GAN)和Transformer架构)

以下分别为你提供使用变分自编码器(VAE)、生成对抗网络(GAN)和Transformer架构进行音乐创作的代码示例。这些示例基于PyTorch框架,并使用了一些简单的音乐表示方法,实际应用中可能需要根据具体的音乐数据和任务进行调整。

变分自编码器(VAE)实现音乐创作

变分自编码器常用于生成连续分布的数据,适用于学习音乐的潜在表示并生成新的音乐。

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
import matplotlib.pyplot as plt


# 假设音乐数据被编码为长度为100的向量
# 这里简单生成一些随机数据作为示例,实际应用中应替换为真实音乐数据
num_samples = 1000
data = np.random.randn(num_samples, 100)
data = torch.FloatTensor(data)
dataset = TensorDataset(data)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)


class VAE(nn.Module):
    def __init__(self, input_dim, hidden_dim, latent_dim):
        super(VAE, self).__init__()
        self.encoder = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            nn.ReLU(True),
            nn.Linear(hidden_dim, 2 * latent_dim)
        )
        self.decoder = nn.Sequential(
            nn.Linear(latent_dim, hidden_dim),
            nn.ReLU(True),
            nn.Linear(hidden_dim, input_dim),
            nn.Tanh()
        )

    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return mu + eps * std

    def forward(self, x):
        h = self.encoder(x)
        mu, logvar = torch.chunk(h, 2, dim=1)
        z = self.reparameterize(mu, logvar)
        recon_x = self.decoder(z)
        return recon_x, mu, logvar


input_dim = 100
hidden_dim = 256
latent_dim = 10
vae = VAE(input_dim, hidden_dim, latent_dim)
optimizer = optim.Adam(vae.parameters(), lr=1e-3)
criterion = nn.MSELoss()


for epoch in range(100):
    for batch in dataloader:
        x = batch[0]
        optimizer.zero_grad()
        recon_x, mu, logvar = vae(x)
        recon_loss = criterion(recon_x, x)
        kl_loss = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp()).sum(dim=1).mean()
        loss = recon_loss + kl_loss
        loss.backward()
        optimizer.step()
    print(f'Epoch {epoch + 1}, Loss: {loss.item()}')


# 生成新音乐
with torch.no_grad():
    z = torch.randn(1, latent_dim)
    new_music = vae.decoder(z)
    print("生成的新音乐向量:", new_music)


生成对抗网络(GAN)实现音乐创作

生成对抗网络通过生成器和判别器的对抗训练来生成新的数据。

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import numpy as np


# 假设音乐数据被编码为长度为100的向量
# 这里简单生成一些随机数据作为示例,实际应用中应替换为真实音乐数据
num_samples = 1000
data = np.random.randn(num_samples, 100)
data = torch.FloatTensor(data)
dataset = TensorDataset(data)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)


class Generator(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(Generator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            nn.ReLU(True),
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU(True),
            nn.Linear(hidden_dim, output_dim),
            nn.Tanh()
        )

    def forward(self, z):
        return self.model(z)


class Discriminator(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super(Discriminator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(hidden_dim, hidden_dim),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(hidden_dim, output_dim),
            nn.Sigmoid()
        )

    def forward(self, x):
        return self.model(x)


input_dim = 10
hidden_dim = 256
output_dim = 100
generator = Generator(input_dim, hidden_dim, output_dim)
discriminator = Discriminator(output_dim, hidden_dim, 1)

optimizer_G = optim.Adam(generator.parameters(), lr=1e-3)
optimizer_D = optim.Adam(discriminator.parameters(), lr=1e-3)

criterion = nn.BCELoss()


for epoch in range(100):
    for i, batch in enumerate(dataloader):
        real_music = batch[0]
        batch_size = real_music.size(0)

        # 训练判别器
        optimizer_D.zero_grad()
        z = torch.randn(batch_size, input_dim)
        fake_music = generator(z)
        real_labels = torch.ones(batch_size, 1)
        fake_labels = torch.zeros(batch_size, 1)

        real_output = discriminator(real_music)
        real_loss = criterion(real_output, real_labels)

        fake_output = discriminator(fake_music.detach())
        fake_loss = criterion(fake_output, fake_labels)

        d_loss = real_loss + fake_loss
        d_loss.backward()
        optimizer_D.step()

        # 训练生成器
        optimizer_G.zero_grad()
        fake_output = discriminator(fake_music)
        g_loss = criterion(fake_output, real_labels)
        g_loss.backward()
        optimizer_G.step()

    print(f'Epoch {epoch + 1}, D Loss: {d_loss.item()}, G Loss: {g_loss.item()}')


# 生成新音乐
with torch.no_grad():
    z = torch.randn(1, input_dim)
    new_music = generator(z)
    print("生成的新音乐向量:", new_music)


Transformer架构实现音乐创作

Transformer架构擅长处理序列数据,在音乐创作中可以用于学习音乐序列的模式。

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import numpy as np


# 假设音乐数据被编码为长度为100的序列,每个元素是一个独热编码的音符表示
# 这里简单生成一些随机数据作为示例,实际应用中应替换为真实音乐数据
num_samples = 1000
num_notes = 128
sequence_length = 100
data = np.random.randint(0, num_notes, size=(num_samples, sequence_length))
data = torch.LongTensor(data)
dataset = TensorDataset(data)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)


class TransformerModel(nn.Module):
    def __init__(self, num_tokens, d_model, nhead, num_layers, dim_feedforward):
        super(TransformerModel, self).__init__()
        self.embedding = nn.Embedding(num_tokens, d_model)
        self.position_encoding = nn.Parameter(torch.zeros(1, sequence_length, d_model))
        self.transformer = nn.TransformerEncoder(
            nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward),
            num_layers
        )
        self.fc = nn.Linear(d_model, num_tokens)

    def forward(self, x):
        x = self.embedding(x)
        x = x + self.position_encoding[:, :x.size(1), :]
        x = self.transformer(x)
        x = self.fc(x)
        return x


num_tokens = num_notes
d_model = 128
nhead = 4
num_layers = 3
dim_feedforward = 512
model = TransformerModel(num_tokens, d_model, nhead, num_layers, dim_feedforward)
optimizer = optim.Adam(model.parameters(), lr=1e-3)
criterion = nn.CrossEntropyLoss()


for epoch in range(100):
    for batch in dataloader:
        x = batch[0]
        optimizer.zero_grad()
        output = model(x)
        loss = criterion(output.view(-1, num_tokens), x.view(-1))
        loss.backward()
        optimizer.step()
    print(f'Epoch {epoch + 1}, Loss: {loss.item()}')


# 生成新音乐
with torch.no_grad():
    start_sequence = torch.randint(0, num_notes, (1, 1))
    generated_sequence = start_sequence
    for _ in range(sequence_length - 1):
        output = model(generated_sequence)
        next_note = torch.argmax(output[:, -1, :], dim=1).unsqueeze(1)
        generated_sequence = torch.cat((generated_sequence, next_note), dim=1)
    print("生成的新音乐序列:", generated_sequence)


代码解释

  1. VAE示例
    • 定义了编码器和解码器网络结构,通过重参数化技巧从潜在空间采样生成新数据。
    • 使用均方误差损失(MSELoss)作为重建损失,KL散度作为正则化项,优化模型以最小化总体损失。
  2. GAN示例
    • 分别定义了生成器和判别器网络,生成器从随机噪声生成音乐数据,判别器区分真实和生成的数据。
    • 使用二元交叉熵损失(BCELoss),在训练过程中交替优化生成器和判别器,使它们相互对抗。
  3. Transformer示例
    • 构建了基于Transformer的模型,包括嵌入层、位置编码、Transformer编码器和全连接层。
    • 使用交叉熵损失(CrossEntropyLoss)训练模型,以预测音乐序列中的下一个音符,生成新的音乐序列。

注意事项

  1. 以上代码中的音乐数据表示是简化的示例,实际应用中需要根据具体的音乐数据格式(如MIDI文件)进行预处理和特征提取。
  2. 超参数(如网络结构参数、学习率、损失函数等)需要根据实际数据和任务进行调优,以获得更好的生成效果。
  3. 这些示例只是基础的实现框架,实际的音乐创作应用可能需要更复杂的模型结构、训练技巧和后处理步骤来生成高质量、符合音乐理论的音乐作品。
风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。