您现在的位置是:首页 >技术交流 >CV方向如何找到适合自己的研究创新点?网站首页技术交流

CV方向如何找到适合自己的研究创新点?

呼叫冰河谷 2024-10-12 00:01:03
简介CV方向如何找到适合自己的研究创新点?

做CV的论文创新的一些思路与方向。分别是无事生非,后浪推前浪,推陈出新,出奇制胜。

无事生非

  • 在原始的数据集上加一些噪声,例如随机遮挡,或者调整饱和度亮度什么的,主要是根据具体的任务来增加噪声或扰动,不可乱来。如果它的精度下降的厉害,那你的思路就来了,如何在有遮挡或有噪声或其他什么情况下,保证模型的精度。
  • 用它的模型去尝试一个新场景的数据集,因为它原来的模型很可能是过拟合的。如果在新场景下精度下降的厉害,思路又有了,如何提升模型的泛化能力,实现在新场景下的高精度。

后浪推前浪

  • 思考一下它存在的问题,例如模型太大,推理速度太慢,训练时间太长,收敛速度慢等。一般来说这存在一个问题,其他问题也是连带着的。如果存在以上的问题,你就可以思考如何去提高推理速度,或者在尽可能不降低精度的情况下,大幅度减少参数量或者计算量,或者加快收敛速度。
  • 考虑一下模型是否太复杂,例如:人工设计的地方太多,后处理太多,需要调参的地方太多。基于这些情况,你可以考虑如何设计一个end-to-end模型,在设计过程中,肯定会出现训练效果不好的情况,这时候需要自己去设计一些新的处理方法,这个方法就是你的创新。

推陈出新

  • 替换一些新的结构,引入一些其它方向的技术,例如transformer,特征金字塔技术等。这方面主要是要多关注一些相关技术,前沿技术,各个方向的内容建议多关注一些。

出奇制胜

  • 尝试去做一些特定的检测或者识别。通用的模型往往为了保证泛化能力,检测识别多个类,而导致每个类的识别精度都不会很高。因此你可以考虑只去检测或识别某一个特定的类。以行为识别为例,一些通用的模型可以识别几十个动作,**但你可以专门做跌倒检测。在这种情况下你可以加很多先验知识在模型中,例如多任务学习。换句话来说,你的模型就是专门针对跌倒设计的,因此往往精度可以更高。这种特定类的检测最好是有些应用前途,让人觉得现实中可以有。

创新思路形成的学习方法

  • 最原始的做法应该是看完方向上比较重要的论文后自己写一个综述,写的过程中往往会发现一些问题,不一定就是要去跟sota模型比精度,而是解决这个方向上还存在的问题。解决还存在的问题才是关键,才是论文的核心价值所在,否则就只是十几页的废纸。例如前面提到的实现轻量化,提高推理速度,实现实时检测,设计end to end模型,都属于解决这个方向上存在的问题。
  • 如果说写完综述后还是没思路,一来是建议尝试以上思路,二来建议找一些跟你方向相关的经典论文看一看,边看边想,这四个字最重要。
  • 很多情况下在模型上加入一些别的方向的模块,例如使用即插即用的模块、注意力机制等,可以使模型有一定的提升,这是算创新的。但需要一个合理的解释为何这么做可以起作用,解决了什么问题。
  • 有时候对原模型做一些小的改进,却有较大的提升,这也属于创新。前提是,这种提升是稳定的,是在多个数据集下都有的提升,而不是一次偶然事件。

 怎么看一个点研究的多不多?看10-20篇文章看看有多少个以这个研究点为主的。

找论文创新点的四个方法:

  • 优中加优
  • 优中找差
  • 合作交流
  • 挖掘比较

理论创新

方法创新

研究对象创新

研究框架创新(概念或理论框架)

研究观点创新

资料创新

学科交叉研究创新 

                                                                                                                                                                  

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。