您现在的位置是:首页 >技术交流 >OpenCV转换HDR图像与源码分析网站首页技术交流

OpenCV转换HDR图像与源码分析

徐福记456 2024-10-05 12:01:04
简介OpenCV转换HDR图像与源码分析

我们常见的图像位深一般是8bit,颜色范围[0, 255],称为标准动态范围SDR(Standard Dynamic Range)。SDR的颜色值有限,如果要图像色彩更鲜艳,那么就需要10bit,甚至12bit,称为高动态范围HDR(High Dynamic Range)。OpenCV有提供SDR转HDR的方法,而逆转换是通过Tone mapping实现。

我们先看下SDR与HDR图像的对比,如下图所示:

SDR图像
HDR图像

 

一、核心函数

在OpenCV的photo模块提供SDR与HDR互转,还有图像曝光融合。 

1、SDR转HDR

HDR算法需要CRF摄像头响应函数,计算CRF示例代码如下:

Mat image;
Mat response;
vector<float> times;
Ptr<CalibrateDebevec> calibrate = createCalibrateDebevec();
calibrate->process(image, response, times);

得到CRF响应函数后,使用MergeDebevec函数来转换HDR图像,C++代码:

Mat hdr;
Ptr<MergeDebevec> merge_debevec = createMergeDebevec();
merge_debevec->process(image, hdr, times, response);

java版本代码:

Mat hdr = new Mat();
MergeDebevec mergeDebevec = Photo.createMergeDebevec();
mergeDebevec.process(image, hdr, matTime);

 python版本代码:

merge_debevec = cv.createMergeDebevec()
hdr = merge_debevec.process(image, time, response)

2、HDR转SDR

HDR逆转SDR是通过Tonemap函数实现,其中2.2为Gamma矫正系数,C++代码如下:

Mat sdr;
float gamma = 2.2f;
Ptr<Tonemap> tonemap = createTonemap(gamma);
tonemap->process(hdr, sdr);

 java版本代码:

Mat ldr = new Mat();
Tonemap tonemap = Photo.createTonemap(2.2f);
tonemap.process(hdr, ldr);

python版本代码:

tonemap = cv.createTonemap(2.2)
ldr = tonemap.process(hdr)

3、图像曝光

在OpenCV中,使用MergeMertens进行图像的曝光融合,C++代码:

Mat exposure;
Ptr<MergeMertens> merge_mertens = createMergeMertens();
merge_mertens->process(image, exposure);

java版本代码:

Mat exposure = new Mat();
MergeMertens mergeMertens = Photo.createMergeMertens();
mergeMertens.process(image, exposure);

 python版本代码:

merge_mertens = cv.createMergeMertens()
exposure = merge_mertens.process(image)

二、实现代码

1、SDR转HDR源码

HDR图像转换的源码位于opencv/modules/photo/src/merge.cpp,首先是createMergeDebevec函数使用makePtr智能指针包裹:

Ptr<MergeDebevec> createMergeDebevec()
{
    return makePtr<MergeDebevecImpl>();
}

核心代码在于MergeDebevecImpl类的process(),具体如下:

class MergeDebevecImpl CV_FINAL : public MergeDebevec
{
public:
    MergeDebevecImpl() :
        name("MergeDebevec"),
        weights(triangleWeights())
    {}

    void process(InputArrayOfArrays src, OutputArray dst, InputArray _times, InputArray input_response) CV_OVERRIDE
    {
        CV_INSTRUMENT_REGION();

        std::vector<Mat> images;
        src.getMatVector(images);
        Mat times = _times.getMat();

        CV_Assert(images.size() == times.total());
        checkImageDimensions(images);
        CV_Assert(images[0].depth() == CV_8U);

        int channels = images[0].channels();
        Size size = images[0].size();
        int CV_32FCC = CV_MAKETYPE(CV_32F, channels);

        dst.create(images[0].size(), CV_32FCC);
        Mat result = dst.getMat();

        Mat response = input_response.getMat();

        if(response.empty()) {
            response = linearResponse(channels);
            response.at<Vec3f>(0) = response.at<Vec3f>(1);
        }

        Mat log_response;
        log(response, log_response);
        CV_Assert(log_response.rows == LDR_SIZE && log_response.cols == 1 &&
                  log_response.channels() == channels);

        Mat exp_values(times.clone());
        log(exp_values, exp_values);

        result = Mat::zeros(size, CV_32FCC);
        std::vector<Mat> result_split;
        split(result, result_split);
        Mat weight_sum = Mat::zeros(size, CV_32F);
        // 图像加权平均
        for(size_t i = 0; i < images.size(); i++) {
            std::vector<Mat> splitted;
            split(images[i], splitted);

            Mat w = Mat::zeros(size, CV_32F);
            for(int c = 0; c < channels; c++) {
                LUT(splitted[c], weights, splitted[c]);
                w += splitted[c];
            }
            w /= channels;

            Mat response_img;
            LUT(images[i], log_response, response_img);
            split(response_img, splitted);
            for(int c = 0; c < channels; c++) {
                result_split[c] += w.mul(splitted[c] - exp_values.at<float>((int)i));
            }
            weight_sum += w;
        }
        weight_sum = 1.0f / weight_sum;

        for(int c = 0; c < channels; c++) {
            result_split[c] = result_split[c].mul(weight_sum);
        }
        // 融合
        merge(result_split, result);
        // 求对数
        exp(result, result);
    }


protected:
    String name;
    Mat weights;
};

这里MergeDebevecImpl继承MergeDebevec父类,最终是继承Algorithm抽象类,位于photo.hpp:

class CV_EXPORTS_W MergeExposures : public Algorithm
{
public:

    CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
                                 InputArray times, InputArray response) = 0;
};


class CV_EXPORTS_W MergeDebevec : public MergeExposures
{
public:
    CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst,
                                 InputArray times, InputArray response) CV_OVERRIDE = 0;
    CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0;
};

2、HDR转SDR源码

前面我们有谈到,HDR转SDR是通过ToneMapping色调映射实现。位于photo模块的tonemap.cpp,入口是createTonemap(),也是使用智能指针包裹:

Ptr<Tonemap> createTonemap(float gamma)
{
    return makePtr<TonemapImpl>(gamma);
}

接着我们继续看TonemapImpl核心代码:

class TonemapImpl CV_FINAL : public Tonemap
{
public:
    TonemapImpl(float _gamma) : name("Tonemap"), gamma(_gamma)
    {}

    void process(InputArray _src, OutputArray _dst) CV_OVERRIDE
    {
        Mat src = _src.getMat();
        Mat dst = _dst.getMat();

        double min, max;
        // 获取图像像素最小值与最大值
        minMaxLoc(src, &min, &max);
        if(max - min > DBL_EPSILON) {
            dst = (src - min) / (max - min);
        } else {
            src.copyTo(dst);
        }
        // 幂运算,指数为gamma的倒数
        pow(dst, 1.0f / gamma, dst);
    }

    ......

protected:
    String name;
    float gamma;
};

同时还提供Drago、Reinhard、Mantiuk算法进行色调映射,大家感兴趣可以去阅读源码。

3、图像曝光源码

图像曝光的源码同样位于merge.cpp,入口是createMergeMertens(),同样使用智能指针包裹:

Ptr<MergeMertens> createMergeMertens(float wcon, float wsat, float wexp)
{
    return makePtr<MergeMertensImpl>(wcon, wsat, wexp);
}

核心源码在MergeMertensImpl类:

class MergeMertensImpl CV_FINAL : public MergeMertens
{
public:
    MergeMertensImpl(float _wcon, float _wsat, float _wexp) :
        name("MergeMertens"),
        wcon(_wcon),
        wsat(_wsat),
        wexp(_wexp)
    {}

    void process(InputArrayOfArrays src, OutputArray dst) CV_OVERRIDE
    {
        ......

        parallel_for_(Range(0, static_cast<int>(images.size())), [&](const Range& range) {
            for(int i = range.start; i < range.end; i++) {
                Mat img, gray, contrast, saturation, wellexp;
                std::vector<Mat> splitted(channels);

                images[i].convertTo(img, CV_32F, 1.0f/255.0f);
                if(channels == 3) {
                    cvtColor(img, gray, COLOR_RGB2GRAY);
                } else {
                    img.copyTo(gray);
                }
                images[i] = img;
                // 通道分离
                split(img, splitted);
                // 计算对比度:拉普拉斯变换
                Laplacian(gray, contrast, CV_32F);
                contrast = abs(contrast);
                // 通道求均值
                Mat mean = Mat::zeros(size, CV_32F);
                for(int c = 0; c < channels; c++) {
                    mean += splitted[c];
                }
                mean /= channels;
                // 计算饱和度
                saturation = Mat::zeros(size, CV_32F);
                for(int c = 0; c < channels;  c++) {
                    Mat deviation = splitted[c] - mean;
                    pow(deviation, 2.0f, deviation);
                    saturation += deviation;
                }
                sqrt(saturation, saturation);
                // 计算曝光量
                wellexp = Mat::ones(size, CV_32F);
                for(int c = 0; c < channels; c++) {
                    Mat expo = splitted[c] - 0.5f;
                    pow(expo, 2.0f, expo);
                    expo = -expo / 0.08f;
                    exp(expo, expo);
                    wellexp = wellexp.mul(expo);
                }

                pow(contrast, wcon, contrast);
                pow(saturation, wsat, saturation);
                pow(wellexp, wexp, wellexp);

                weights[i] = contrast;
                if(channels == 3) {
                    weights[i] = weights[i].mul(saturation);
                }
                weights[i] = weights[i].mul(wellexp) + 1e-12f;

                AutoLock lock(weight_sum_mutex);
                weight_sum += weights[i];
            }
        });

        int maxlevel = static_cast<int>(logf(static_cast<float>(min(size.width, size.height))) / logf(2.0f));
        std::vector<Mat> res_pyr(maxlevel + 1);
        std::vector<Mutex> res_pyr_mutexes(maxlevel + 1);

        parallel_for_(Range(0, static_cast<int>(images.size())), [&](const Range& range) {
            for(int i = range.start; i < range.end; i++) {
                weights[i] /= weight_sum;
                std::vector<Mat> img_pyr, weight_pyr;
                // 分别构建image、weight图像金字塔
                buildPyramid(images[i], img_pyr, maxlevel);
                buildPyramid(weights[i], weight_pyr, maxlevel);

                for(int lvl = 0; lvl < maxlevel; lvl++) {
                    Mat up;
                    pyrUp(img_pyr[lvl + 1], up, img_pyr[lvl].size());
                    img_pyr[lvl] -= up;
                }
                for(int lvl = 0; lvl <= maxlevel; lvl++) {
                    std::vector<Mat> splitted(channels);
                    // 通道分离,然后与weight权重相乘
                    split(img_pyr[lvl], splitted);
                    for(int c = 0; c < channels; c++) {
                        splitted[c] = splitted[c].mul(weight_pyr[lvl]);
                    }
                    // 图像融合
                    merge(splitted, img_pyr[lvl]);

                    AutoLock lock(res_pyr_mutexes[lvl]);
                    if(res_pyr[lvl].empty()) {
                        res_pyr[lvl] = img_pyr[lvl];
                    } else {
                        res_pyr[lvl] += img_pyr[lvl];
                    }
                }
            }
        });
        for(int lvl = maxlevel; lvl > 0; lvl--) {
            Mat up;
            pyrUp(res_pyr[lvl], up, res_pyr[lvl - 1].size());
            res_pyr[lvl - 1] += up;
        }
        dst.create(size, CV_32FCC);
        res_pyr[0].copyTo(dst);
    }

    ......

protected:
    String name;
    float wcon, wsat, wexp;
};

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。