您现在的位置是:首页 >技术杂谈 >大模型芯片网站首页技术杂谈

大模型芯片

AI研究院 2024-09-07 00:01:02
简介大模型芯片

自从ChatGPT问世以来,大模型取得了迅猛的发展。不仅是在ChatGPT本身这一自然语言处理领域取得了重要进展,而且在视频领域也有令人瞩目的大模型,比如DINOv2,它可以对视频图像进行语义理解。此外,SAM是一种能够对场景进行细粒度分割的模型。这些进展显示出我们正处于一个新的范式拐点,即大模型无处不在。

与此同时,主流的大模型架构——Transformer架构,也在ChatGPT的成功应用后引起越来越多的关注。许多研究和应用领域开始将传统的卷积神经网络(CNN)转向Transformer架构。

在大模型的落地应用方面,目前主要集中在云侧,依赖GPU提供算力,所带来的影响和冲击波巨大。想象一下,如果大模型能够在边缘侧和终端侧进行部署,那将推动智能应用的大力普及和发展,为用户和企业带来更多的便利和价值。想象一下,每个人在打开手机或终端时,就能轻松获取医生、律师、厨师等专业知识,这将是可能的。

长远来看,实现在边缘侧和终端侧部署大模型也将是未来的发展方向。然而,要在端侧和边缘侧高效地部署Transformer,我们需要思考使用何种技术和资源。是否继续依赖GPU?或者采用其他更适合边缘侧和终端侧的解决方案。

Transformer架构:大模型的最佳选择

所有这些大模型本质上都是经过预训练的模型,而且大都是基于Transformer架构。Transformer和CNN都是深度学习中常用的神经网络架构。与CNN不同,Transformer模型引入了自注意力机制(self-attention mechanism),使得模型能够在处理序列数据时捕捉到更长距离的依赖关系,从而更好地建模语义信息。需要指明的是,尽管Transformer在计算机视觉领域取得了一些成功,但CNN仍然在许多领域中表现出色,尤其是在处理具有空间局部性和平移不变性的图像数据时。因此,目前CNN仍然是许多计算机视觉任务的首选模型。

Transformer架构最初被广泛应用于自然语言处理领域,尤其是在机器翻译任务中取得了重大突破。随着Transformer的成功,人们开始投入更多的资源将其应用于计算机视觉(CV)领域。研究者们发现,在一些计算机视觉任务中,如图像分类、目标检测和图像生成等,使用Transformer模型可以取得与或甚至超过传统的CNN模型相媲美的性能。此外,由于Transformer模型的并行计算能力和扩展性较好,它还被应用于处理高分辨率图像和视频等大规模数据的任务中。

要想在边缘侧和终端侧实现大模型应用,也势必将要部署Transformer。不同于云端,在边缘侧和端侧部署Transformer模型面临的最大挑战之一是功耗。功耗的问题需要从两方面来解决:一方面是从算法侧入手,需要在算法侧通过剪枝、量化和低比特等技术进一步优化和压缩大模型,以减少其计算和存储需求,从而降低功耗。另外一个在硬件层面,考虑到GPU的成本和功耗,行业需要寻找更高效的硬件加速器和低功耗的芯片设计,提供高效的计算能力。

AX650N成为端侧、边缘侧Transformer最佳落地平台

2023年3月,爱芯元智推出了第三代高算力、高能效比的SoC芯片——AX650N,依托其在高性能、高精度、易部署、低功耗等方面的优异表现,AX650N受到越来越多有大模型部署需求用户的青睐,并且成为业内首屈一指的Transformer端侧、边缘侧落地平台。

在模型压缩方面,前文中我们提到了一些在算法层面的压缩方法,如剪枝、稀疏等,爱芯元智联合创始人、副总裁刘建伟指出,低比特也是压缩模型的一个方法,而且是对硬件最友好(便宜)的方式。在这方面,AX650N支持低比特混合精度,如INT4。这样的好处在于,一般大模型的参数是比较大的,如果能采用INT4,可以极大地减少内存和带宽占用率,有效控制端侧边缘侧部署的成本。

爱芯元智正在开发基于AX650N的爱芯派Pro开发板。

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。