您现在的位置是:首页 >技术杂谈 >Lecture 7 Deep Learning for NLP: Feedforward Networks网站首页技术杂谈

Lecture 7 Deep Learning for NLP: Feedforward Networks

小羊和小何 2024-09-03 00:01:03
简介Lecture 7 Deep Learning for NLP: Feedforward Networks

Feedforward Neural Networks Basics

Deep Learning

  • A branch of machine learning 机器学习的一个分支

  • Re-branded name for neural networks 神经网络的重命名

  • Deep: Many layers are chained together in modern deep learning models 深度:现在深度学习模型中的链式链接的多层

  • Neural Networks: Historically inspired by the way computation works in the brain 神经网络:历史上受大脑计算方式的启发

    • Consists of computation units called neurons 由称为神经元的计算单元组成

Feedforward Neural Network 前馈神经网络

  • Also called multilayer perceptron 也被称为多层感知机

  • E.g. of architecture: 架构示例

    在这里插入图片描述

  • Each arrow carries a weight, reflecting its importance 每个箭头都会携带一个权重,以反应其重要性

  • Certain layers have non-linear activation functions 某些层具有非线性的激活函数

Neuron 神经元

  • Each neuron is a function: 每个神经元是一个函数

    • Given input x, compute real-value h: 给定输入x,计算实值h



    在这里插入图片描述

    • Scales input (with weights, w) and adds offset (bias, b) 通过权重w缩放输入并添加偏移量(偏置,b
    • Applies non-linear function, such as logistic sigmoid, hyperbolic sigmoid(tanh), or rectified linear unit 应用非线性函数,如逻辑sigmoid、双曲sigmoid(tanh)或修正线性单元
    • w and b are parameters of the model wb 是模型的参数
  • Typically hava several hidden units 通常有几个隐藏单元. E.g.

    • Each with its own weights wi, and bias terms bi 每个单元都有自己的权重 wi,和偏置项 bi

    • Can be expressed using matrix and vector operators 可以使用矩阵和向量运算符表示:

    • Where is a matrix comprising the weight vectors and 是一个包含权重向量的矩阵 is a vector of all bias terms 是所有偏置项的向量

    • Non-linear function applied element-wise 非线性函数逐元素应用

Output Layer 输出层

  • For binary classification problem: Sigmoid Activation Function 对于二元分类问题:Sigmoid 激活函数

  • Multi-class classification problem: Softmax Activation Function ensures probabilities are greater than 0 and sum to 1 多类分类问题:Softmax 激活函数确保概率大于0且和为1:

Optimization

  • Consider how well the model fits the training data, in terms of the probability it assigns to the correct output 考虑模型如何拟合训练数据,即它对正确输出所分配的概率

    • Want to maximize total probability L 想要最大化总概率 L

    • Equivalently minimize -log L with respect to parameters 等价地,以参数最小化 -log L

  • Trained using gradient descent 使用梯度下降进行训练

    • Tools like tensorflow, pytorch, dynet use autodiff to compute gradients automatically 像 tensorflow, pytorch, dynet 这样的工具用于自动计算梯度

Regularization 正则化

  • Have many parameters, so the model overfits easily 有许多参数,所以模型很容易过拟合

  • Low bias, high variance 偏差较低,方差较高

  • Regularization is very import in neural networks 在神经网络中,正则化非常重要

  • L1-norm: sum of absolute values of all parameters L1范数:所有参数的绝对值之和

  • L2-norm: sum of squares of all parameters L2范数:所有参数的平方之和

  • Dropout: randomly zero-out some neurons of a layer Dropout:随机将某一层的部分神经元值设为零

    • If a dropout rate = 0.1, a random 10% of neurons now have 0 values 如果Dropout比率 = 0.1,那么随机10%的神经元现在的值为0

    在这里插入图片描述

    • Can apply dropout to any layer, but in practice, mostly to the hidden layers 可以在任何层应用dropout,但实际上,主要应用于隐藏层

Applications in NLP

Topic Classification 主题分类

  • Given a document, classify it into a predefined set of topics. E.g. economy, politics, sports 给定一个文档,将其分类到预定义的主题集合中。例如:经济,政治,体育

  • Input: Bag-of-words 输入:词袋模型

    Example input:

    在这里插入图片描述

  • Training:

    Architecture:

    在这里插入图片描述


    Hidden Layers:






    • Randomly initialize W and b
    • E.g:

      Input:

      Output: : Probability distribution over

      Loss: if true label is

  • Prediction:

    • E.g.

      Input:

      Output:

      Predicted class is

  • Potential Improvements: 可能的改进

    • Use Bag of bigrams as input 使用bigrams的词袋作为输入
    • Preprocess text to lemmatize words and remove stopwords 预处理文本,对词进行词元化并去除停用词
    • Instead of raw counts, can weight words using TF-IDF or indicators 可以使用TF-IDF或指标来权衡单词,而不是原始计数

Language Model as Classifiers 语言模型作为分类器

  • Language Models can be considered simple classifiers 语言模型可以被视为简单的分类器.

    • E.g. For a trigram model: classifies the likely next word in a sequence, given salt and and 给出了在给定 saltand 的情况下,可能的下一个词的分类
  • Feedforward Neural Network Language Model 前向传播神经网络语言模型

    • Use neural network as a classifier to model 使用神经网络作为分类器来模型
    • Input features: The previous words 输入特征:前面的单词
    • Output classes: the next word 输出类别:下一个单词
    • Use Word Embeddings to represent each word 使用词嵌入来表示每个单词
      • E.g. of Word Embeddings: 词嵌入的例子

        在这里插入图片描述

Word Embeddings 词嵌入

  • Maps discrete word symbols to continuous vectors in a relatively low dimensional space 将离散的词符号映射到相对较低维度的连续向量空间中

  • Word embeddings allow the model to capture similarity between words 词嵌入允许模型捕获单词之间的相似性

  • In feed-forward neural network language model, the first layer is the sum of input word embeddings 在前向传播神经网络语言模型中,第一层是输入词嵌入的和

Training a Feed-Forward Neural Network Language Model 训练前向传播神经网络语言模型

  • E.g.

  • Lookup word embeddings () for a, cow, and eats

  • Concatenate them and feed it to the network 将它们连接起来并输入网络:

  • gives the probability distribution over all words in the vocabulary 给出了所有词汇表中单词的概率分布

    • E.g.

    在这里插入图片描述


  • Loss:

  • Most parameters are in the word embeddings W1 (size = d * |V|) and the output embeddings W3 (size = |V| * d) 大部分参数都在词嵌入 W1 (大小 = d * |V|) 和输出嵌入 W3 (大小 = |V| * d)

  • Example Architecture:

    在这里插入图片描述

  • Problem of Count-based N-gram models: 基于计数的N-gram模型的问题

    • Cheap to train 便宜的训练
    • Problems with sparsity and scaling to larger contexts 在稀疏性和大规模上下文的扩展性上存在问题
    • Don’t adequately capture properties of words 不能充分捕获单词的属性
  • Advantages of Feed-Forward Neural Network Language Model: 前向传播神经网络语言模型的优点

    • Automatically capture word properties, leading to more robust estimates 自动捕获单词的属性,导致更稳健的估计

Feed-Forward Neural Network for POS Tagging 用于词性标注的前向传播神经网络

  • POS tagging can also be framed as classification: 词性标注也可以被框定为分类

    • -> classifies the likely POS tag for eatseats的可能的词性标签进行分类
  • Feed-Forward Neural Network Language Model architecture can be adapted to the task directly 前向传播神经网络语言模型的架构可以直接适应这个任务

  • Inputs:

    • recent words 最近的词:
    • recent tags 最近的标签:
  • Outputs:

    • current tags:
  • Frame as neural network with:

    • 5 inputs: 3 word embeddings and 2 tag embeddings 5个输入:3个词嵌入和2个标签嵌入
    • 1 output: vector of size |T|, using softmax 1个输出:大小为|T|的向量,其中|T|是词性标签集的大小
  • Training to minimize:

  • Example Architecture:

    在这里插入图片描述

Convolutional Networks

Convolutional Networks 卷积网络

  • Commonly used in computer vision 常用于计算机视觉

  • Identify indicative local predictors 确定指示性本地预测因子

  • Combine them to produce a fixed-size representation 将它们合并,形成固定大小的表示

Convolutional Networks for NLP

  • Sliding window over sequence 按顺序滑动窗口

  • W = convolution filter (linear transformation + tanh) W = 卷积滤波器(线性变换+tanh)。

  • max-pool to produce a fixed-size representation max-pool来产生一个固定大小的表示

  • Example architecture:

    在这里插入图片描述

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。