您现在的位置是:首页 >学无止境 >《黑马程序员》分布式内存计算Spark环境部署网站首页学无止境

《黑马程序员》分布式内存计算Spark环境部署

懒羊羊夸夸~ 2024-08-15 00:01:06
简介《黑马程序员》分布式内存计算Spark环境部署

分布式内存计算Spark环境部署

注意

本小节的操作,基于:大数据集群(Hadoop生态)安装部署环节中所构建的Hadoop集群

如果没有Hadoop集群,请参阅前置内容,部署好环境。

简介

Spark是一款分布式内存计算引擎,可以支撑海量数据的分布式计算。

Spark在大数据体系是明星产品,作为最新一代的综合计算引擎,支持离线计算和实时计算。

在大数据领域广泛应用,是目前世界上使用最多的大数据分布式计算引擎。

我们将基于前面构建的Hadoop集群,部署Spark Standalone集群。

安装

  1. 【node1执行】下载并解压

    wget https://archive.apache.org/dist/spark/spark-2.4.5/spark-2.4.5-bin-hadoop2.7.tgz
    
    # 解压
    tar -zxvf spark-2.4.5-bin-hadoop2.7.tgz -C /export/server/
    
    # 软链接
    ln -s /export/server/spark-2.4.5-bin-hadoop2.7 /export/server/spark
    
  2. 【node1执行】修改配置文件名称

    # 改名
    cd /export/server/spark/conf
    mv spark-env.sh.template spark-env.sh
    mv slaves.template slaves
    
  3. 【node1执行】修改配置文件,spark-env.sh

    ## 设置JAVA安装目录
    JAVA_HOME=/export/server/jdk
    
    ## HADOOP软件配置文件目录,读取HDFS上文件和运行YARN集群
    HADOOP_CONF_DIR=/export/server/hadoop/etc/hadoop
    YARN_CONF_DIR=/export/server/hadoop/etc/hadoop
    
    ## 指定spark老大Master的IP和提交任务的通信端口
    export SPARK_MASTER_HOST=node1
    export SPARK_MASTER_PORT=7077
    
    SPARK_MASTER_WEBUI_PORT=8080
    SPARK_WORKER_CORES=1
    SPARK_WORKER_MEMORY=1g
    
  4. 【node1执行】修改配置文件,slaves

    node1
    node2
    node3
    
  5. 【node1执行】分发

    scp -r spark-2.4.5-bin-hadoop2.7 node2:$PWD
    scp -r spark-2.4.5-bin-hadoop2.7 node3:$PWD
    
  6. 【node2、node3执行】设置软链接

    ln -s /export/server/spark-2.4.5-bin-hadoop2.7 /export/server/spark
    
  7. 【node1执行】启动Spark集群

    /export/server/spark/sbin/start-all.sh
    
    # 如需停止,可以
    /export/server/spark/sbin/stop-all.sh
    
  8. 打开Spark监控页面,浏览器打开:http://node1:8081

  9. 【node1执行】提交测试任务

    /export/server/spark/bin/spark-submit --master spark://node1:7077 --class org.apache.spark.examples.SparkPi /export/server/spark/examples/jars/spark-examples_2.11-2.4.5.jar
    
风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。