您现在的位置是:首页 >其他 >尚硅谷大数据hadoop教程_mapReduce网站首页其他

尚硅谷大数据hadoop教程_mapReduce

莫等闲 白了少年头 2024-07-13 12:01:02
简介尚硅谷大数据hadoop教程_mapReduce

p67 课程介绍

在这里插入图片描述

p68概述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

p69 mapreduce核心思想

在这里插入图片描述

p70 wordcount源码 序列化类型

mapReduce三类进程
在这里插入图片描述

在这里插入图片描述

p71 编程规范

用户编写的程序分成三个部分:Mapper、Reducer和Driver。
在这里插入图片描述
在这里插入图片描述

P72 wordcount需求案例分析

在这里插入图片描述

p 73 -78 案例环境准备

(1)创建maven工程,MapReduceDemo
(2)在pom.xml文件中添加如下依赖

<dependencies>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-client</artifactId>
        <version>3.1.3</version>
    </dependency>
    <dependency>
        <groupId>junit</groupId>
        <artifactId>junit</artifactId>
        <version>4.12</version>
    </dependency>
    <dependency>
        <groupId>org.slf4j</groupId>
        <artifactId>slf4j-log4j12</artifactId>
        <version>1.7.30</version>
    </dependency>
</dependencies>

(2)在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入。

log4j.rootLogger=INFO, stdout  
log4j.appender.stdout=org.apache.log4j.ConsoleAppender  
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout  
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n  
log4j.appender.logfile=org.apache.log4j.FileAppender  
log4j.appender.logfile.File=target/spring.log  
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout  
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n

(3)创建包名:com.atguigu.mapreduce.wordcount
4)编写程序
(1)编写Mapper类

package com.atguigu.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
	
	Text k = new Text();
	IntWritable v = new IntWritable(1);
	
	@Override
	protected void map(LongWritable key, Text value, Context context)	throws IOException, InterruptedException {
		
		// 1 获取一行
		String line = value.toString();
		
		// 2 切割
		String[] words = line.split(" ");
		
		// 3 输出
		for (String word : words) {
			
			k.set(word);
			context.write(k, v);
		}
	}
}

(2)编写Reducer类

package com.atguigu.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{

int sum;
IntWritable v = new IntWritable();

	@Override
	protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
		
		// 1 累加求和
		sum = 0;
		for (IntWritable count : values) {
			sum += count.get();
		}
		
		// 2 输出
         v.set(sum);
		context.write(key,v);
	}
}

(3)编写Driver驱动类

package com.atguigu.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountDriver {

	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

		// 1 获取配置信息以及获取job对象
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);

		// 2 关联本Driver程序的jar
		job.setJarByClass(WordCountDriver.class);

		// 3 关联Mapper和Reducer的jar
		job.setMapperClass(WordCountMapper.class);
		job.setReducerClass(WordCountReducer.class);

		// 4 设置Mapper输出的kv类型
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);

		// 5 设置最终输出kv类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		
		// 6 设置输入和输出路径
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		// 7 提交job
		boolean result = job.waitForCompletion(true);
		System.exit(result ? 0 : 1);
	}
}

本地测试

(1)需要首先配置好HADOOP_HOME变量以及Windows运行依赖
(2)在IDEA/Eclipse上运行程序

提交到集群测试

集群上测试
(1)用maven打jar包,需要添加的打包插件依赖

<build>
    <plugins>
        <plugin>
            <artifactId>maven-compiler-plugin</artifactId>
            <version>3.6.1</version>
            <configuration>
                <source>1.8</source>
                <target>1.8</target>
            </configuration>
        </plugin>
        <plugin>
            <artifactId>maven-assembly-plugin</artifactId>
            <configuration>
                <descriptorRefs>
                    <descriptorRef>jar-with-dependencies</descriptorRef>
                </descriptorRefs>
            </configuration>
            <executions>
                <execution>
                    <id>make-assembly</id>
                    <phase>package</phase>
                    <goals>
                        <goal>single</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

(2)将程序打成jar包

(3)修改不带依赖的jar包名称为 wc.jar,并拷贝该jar包到Hadoop集群的 /opt/module/hadoop-3.1.3 路径。
(4)启动Hadoop集群
[atguigu@hadoop102 hadoop-3.1.3]sbin/start-dfs.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
(5)执行WordCount程序
[atguigu@hadoop102 hadoop-3.1.3]$ hadoop jar wc.jar
com.atguigu.mapreduce.wordcount.WordCountDriver /user/atguigu/input /user/atguigu/output

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。