您现在的位置是:首页 >技术交流 >Polygon zkEVM Prover的 RPC功能网站首页技术交流
Polygon zkEVM Prover的 RPC功能
1. 引言
https://github.com/0xPolygonHermez/zkevm-prover为Polygon zkEVM生成proof,其主要承担3类RPC功能:
- 1)作为Aggregator RPC client(Prover模块)
- 2)作为Executor RPC server(Executor模块)
- 3)作为StateDB RPC server(StateDB模块)
2. 作为Aggregator RPC client
当zkEVM Prover连接某Aggregator server时,其作为Aggregator RPC client:
- 支持多个zkEVM Prover同时连接同一Aggregator,从而可提供更多的proof generation power。
Channel
实现的为Prover client 与 Aggregator server 之间的双向通讯通道,通过Channel
函数可获取aggregator messages,并以同一id,通过Channel
函数来返回prover messages。详细的RPC接口规范见aggregator.proto
:
/**
* Define all methods implementes by the gRPC
* Channel: prover receives aggregator messages and returns prover messages with the same id
*/
service AggregatorService {
rpc Channel(stream ProverMessage) returns (stream AggregatorMessage) {}
}
/*type AggregatorService_ChannelServer interface {
Send(*AggregatorMessage) error //发送request
Recv() (*ProverMessage, error) //接收response
grpc.ServerStream
}*/
message AggregatorMessage
{
string id = 1;
oneof request
{
GetStatusRequest get_status_request = 2;
GenBatchProofRequest gen_batch_proof_request = 3;
GenAggregatedProofRequest gen_aggregated_proof_request = 4;
GenFinalProofRequest gen_final_proof_request = 5;
CancelRequest cancel_request = 6;
GetProofRequest get_proof_request = 7;
}
}
message ProverMessage
{
string id = 1;
oneof response
{
GetStatusResponse get_status_response = 2;
GenBatchProofResponse gen_batch_proof_response = 3;
GenAggregatedProofResponse gen_aggregated_proof_response = 4;
GenFinalProofResponse gen_final_proof_response = 5;
CancelResponse cancel_response = 6;
GetProofResponse get_proof_response = 7;
}
}
向Aggregator server调用Channel
函数,配套的ProverMessage
参数 与 AggregatorMessage
参数主要有以下六大类:
-
1)GetStatusRequest VS GetStatusResponse:Aggregator询问Prover client状态:
/** * @dev GetStatusRequest */ message GetStatusRequest {} /** * @dev Response GetStatus * @param {status} - server status * - BOOTING: being ready to compute proofs * - COMPUTING: busy computing a proof * - IDLE: waiting for a proof to compute * - HALT: stop * @param {last_computed_request_id} - last proof identifier that has been computed * @param {last_computed_end_time} - last proof timestamp when it was finished * @param {current_computing_request_id} - id of the proof that is being computed * @param {current_computing_start_time} - timestamp when the proof that is being computed started * @param {version_proto} - .proto verion * @param {version_server} - server version * @param {pending_request_queue_ids} - list of identifierss of proof requests that are in the pending queue * @param {prover_name} - id of this prover server, normally specified via config.json, or UNSPECIFIED otherwise; it does not change if prover reboots * @param {prover_id} - id of this prover instance or reboot; it changes if prover reboots; it is a UUID, automatically generated during the initialization * @param {number_of_cores} - number of cores in the system where the prover is running * @param {total_memory} - total memory in the system where the prover is running * @param {free_memory} - free memory in the system where the prover is running */ message GetStatusResponse { enum Status { STATUS_UNSPECIFIED = 0; STATUS_BOOTING = 1; STATUS_COMPUTING = 2; STATUS_IDLE = 3; STATUS_HALT = 4; } Status status = 1; string last_computed_request_id = 2; uint64 last_computed_end_time = 3; string current_computing_request_id = 4; uint64 current_computing_start_time = 5; string version_proto = 6; string version_server = 7; repeated string pending_request_queue_ids = 8; string prover_name = 9; string prover_id = 10; uint64 number_of_cores = 11; uint64 total_memory = 12; uint64 free_memory = 13; uint64 fork_id = 14; }
-
2)CancelRequest VS CancelResponse:Aggregator向Prover client请求取消指定的proof request。
/** * @dev CancelRequest * @param {id} - identifier of the proof request to cancel */ message CancelRequest { string id = 1; } /** * @dev CancelResponse * @param {result} - request result */ message CancelResponse { Result result = 1; } /** * @dev Result * - OK: succesfully completed * - ERROR: request is not correct, i.e. input data is wrong * - INTERNAL_ERROR: internal server error when delivering the response */ enum Result { RESULT_UNSPECIFIED = 0; RESULT_OK = 1; RESULT_ERROR = 2; RESULT_INTERNAL_ERROR = 3; }
-
3)GetProofRequest VS GetProofResponse:Aggregator向Prover client请求获取指定的recursive proof或final proof。
/** * @dev Request GetProof * @param {id} - proof identifier of the proof request * @param {timeout} - time to wait until the service responds */ message GetProofRequest { string id = 1; uint64 timeout = 2; } /** * @dev GetProofResponse * @param {id} - proof identifier * @param {final_proof} - groth16 proof + public circuit inputs * @param {recursive_proof} - recursive proof json * @param {result} - proof result * - COMPLETED_OK: proof has been computed successfully and it is valid * - ERROR: request error * - COMPLETED_ERROR: proof has been computed successfully and it is not valid * - PENDING: proof is being computed * - INTERNAL_ERROR: server error during proof computation * - CANCEL: proof has been cancelled * @param {result_string} - extends result information */ message GetProofResponse { enum Result { RESULT_UNSPECIFIED = 0; RESULT_COMPLETED_OK = 1; RESULT_ERROR = 2; RESULT_COMPLETED_ERROR = 3; RESULT_PENDING = 4; RESULT_INTERNAL_ERROR = 5; RESULT_CANCEL = 6; } string id = 1; oneof proof { FinalProof final_proof = 2; string recursive_proof =3; } Result result = 4; string result_string = 5; }
-
4)GenBatchProofRequest VS GenBatchProofResponse:Aggregator向Prover client发送生成batch proof请求。
/** * @dev GenBatchProofRequest * @param {input} - input prover */ message GenBatchProofRequest { InputProver input = 1; } /** * @dev InputProver * @param {public_inputs} - public inputs * @param {db} - database containing all key-values in smt matching the old state root * @param {contracts_bytecode} - key is the hash(contractBytecode), value is the bytecode itself */ message InputProver { PublicInputs public_inputs = 1; map<string, string> db = 4; // For debug/testing purpposes only. Don't fill this on production map<string, string> contracts_bytecode = 5; // For debug/testing purpposes only. Don't fill this on production } /* * @dev PublicInputs * @param {old_state_root} * @param {old_acc_input_hash} * @param {old_batch_num} * @param {chain_id} * @param {batch_l2_data} * @param {global_exit_root} * @param {sequencer_addr} * @param {aggregator_addr} */ message PublicInputs { bytes old_state_root = 1; bytes old_acc_input_hash = 2; uint64 old_batch_num = 3; uint64 chain_id = 4; uint64 fork_id = 5; bytes batch_l2_data = 6; //输入a batch of EVM transactions bytes global_exit_root = 7; uint64 eth_timestamp = 8; string sequencer_addr = 9; string aggregator_addr = 10; } /** * @dev GenBatchProofResponse * @param {id} - proof identifier, to be used in GetProofRequest() * @param {result} - request result */ message GenBatchProofResponse { string id = 1; Result result = 2; } /** * @dev Result * - OK: succesfully completed * - ERROR: request is not correct, i.e. input data is wrong * - INTERNAL_ERROR: internal server error when delivering the response */ enum Result { RESULT_UNSPECIFIED = 0; RESULT_OK = 1; RESULT_ERROR = 2; RESULT_INTERNAL_ERROR = 3; }
-
5)GenAggregatedProofRequest VS GenAggregatedProofResponse:Aggregator向Prover client发送生成aggregated proof请求。
/** * @dev GenAggregatedProofRequest * @param {recursive_proof_1} - proof json of the first batch to aggregate * @param {recursive_proof_2} - proof json of the second batch to aggregate */ message GenAggregatedProofRequest { string recursive_proof_1 = 1; string recursive_proof_2 = 2; } /** * @dev GenAggregatedProofResponse * @param {id} - proof identifier, to be used in GetProofRequest() * @param {result} - request result */ message GenAggregatedProofResponse { string id = 1; Result result = 2; } /** * @dev Result * - OK: succesfully completed * - ERROR: request is not correct, i.e. input data is wrong * - INTERNAL_ERROR: internal server error when delivering the response */ enum Result { RESULT_UNSPECIFIED = 0; RESULT_OK = 1; RESULT_ERROR = 2; RESULT_INTERNAL_ERROR = 3; }
-
6)GenFinalProofRequest VS GenFinalProofResponse:Aggregator向Prover client发送生成final proof请求。
/** * @dev GenFinalProofRequest * @param {recursive_proof} - proof json of the batch or aggregated proof to finalise * @param {aggregator_addr} - address of the aggregator */ message GenFinalProofRequest { string recursive_proof = 1; string aggregator_addr = 2; } /** * @dev Response GenFinalProof * @param {id} - proof identifier, to be used in GetProofRequest() * @param {result} - request result */ message GenFinalProofResponse { string id = 1; Result result = 2; } /** * @dev Result * - OK: succesfully completed * - ERROR: request is not correct, i.e. input data is wrong * - INTERNAL_ERROR: internal server error when delivering the response */ enum Result { RESULT_UNSPECIFIED = 0; RESULT_OK = 1; RESULT_ERROR = 2; RESULT_INTERNAL_ERROR = 3; }
对应的Aggregator server端代码为:
// Channel implements the bi-directional communication channel between the
// Prover client and the Aggregator server.
func (a *Aggregator) Channel(stream pb.AggregatorService_ChannelServer) error {
metrics.ConnectedProver()
defer metrics.DisconnectedProver()
ctx := stream.Context()
var proverAddr net.Addr
p, ok := peer.FromContext(ctx)
if ok {
proverAddr = p.Addr
}
prover, err := prover.New(stream, proverAddr, a.cfg.ProofStatePollingInterval)
if err != nil {
return err
}
log := log.WithFields(
"prover", prover.Name(),
"proverId", prover.ID(),
"proverAddr", prover.Addr(),
)
log.Info("Establishing stream connection with prover")
// Check if prover supports the required Fork ID
if !prover.SupportsForkID(a.cfg.ForkId) {
err := errors.New("prover does not support required fork ID")
log.Warn(FirstToUpper(err.Error()))
return err
}
for {
select {
case <-a.ctx.Done():
// server disconnected
return a.ctx.Err()
case <-ctx.Done():
// client disconnected
return ctx.Err()
default:
isIdle, err := prover.IsIdle() //判断GetStatusRequest返回的是否为GetStatusResponse_STATUS_IDLE
if err != nil {
log.Errorf("Failed to check if prover is idle: %v", err)
time.Sleep(a.cfg.RetryTime.Duration)
continue
}
if !isIdle {
log.Debug("Prover is not idle")
time.Sleep(a.cfg.RetryTime.Duration)
continue
}
_, err = a.tryBuildFinalProof(ctx, prover, nil)
if err != nil {
log.Errorf("Error checking proofs to verify: %v", err)
}
proofGenerated, err := a.tryAggregateProofs(ctx, prover)
if err != nil {
log.Errorf("Error trying to aggregate proofs: %v", err)
}
if !proofGenerated {
proofGenerated, err = a.tryGenerateBatchProof(ctx, prover)
if err != nil {
log.Errorf("Error trying to generate proof: %v", err)
}
}
if !proofGenerated {
// if no proof was generated (aggregated or batch) wait some time before retry
time.Sleep(a.cfg.RetryTime.Duration)
} // if proof was generated we retry immediately as probably we have more proofs to process
}
}
}
Prover client端代码为:
void* aggregatorClientThread(void* arg)
{
cout << "aggregatorClientThread() started" << endl;
string uuid;
AggregatorClient *pAggregatorClient = (AggregatorClient *)arg;
while (true)
{
::grpc::ClientContext context;
std::unique_ptr<grpc::ClientReaderWriter<aggregator::v1::ProverMessage, aggregator::v1::AggregatorMessage>> readerWriter;
readerWriter = pAggregatorClient->stub->Channel(&context);
bool bResult;
while (true)
{
::aggregator::v1::AggregatorMessage aggregatorMessage;
::aggregator::v1::ProverMessage proverMessage;
// Read a new aggregator message
bResult = readerWriter->Read(&aggregatorMessage);
if (!bResult)
{
cerr << "Error: aggregatorClientThread() failed calling readerWriter->Read(&aggregatorMessage)" << endl;
break;
}
switch (aggregatorMessage.request_case())
{
case aggregator::v1::AggregatorMessage::RequestCase::kGetProofRequest:
break;
case aggregator::v1::AggregatorMessage::RequestCase::kGetStatusRequest:
case aggregator::v1::AggregatorMessage::RequestCase::kGenBatchProofRequest:
case aggregator::v1::AggregatorMessage::RequestCase::kCancelRequest:
cout << "aggregatorClientThread() got: " << aggregatorMessage.ShortDebugString() << endl;
break;
case aggregator::v1::AggregatorMessage::RequestCase::kGenAggregatedProofRequest:
cout << "aggregatorClientThread() got genAggregatedProof() request" << endl;
break;
case aggregator::v1::AggregatorMessage::RequestCase::kGenFinalProofRequest:
cout << "aggregatorClientThread() got genFinalProof() request" << endl;
break;
default:
break;
}
// We return the same ID we got in the aggregator message
proverMessage.set_id(aggregatorMessage.id());
string filePrefix = pAggregatorClient->config.outputPath + "/" + getTimestamp() + "_" + aggregatorMessage.id() + ".";
if (pAggregatorClient->config.saveRequestToFile)
{
string2file(aggregatorMessage.DebugString(), filePrefix + "aggregator_request.txt");
}
switch (aggregatorMessage.request_case())
{
case aggregator::v1::AggregatorMessage::RequestCase::kGetStatusRequest:
{
// Allocate a new get status response
aggregator::v1::GetStatusResponse * pGetStatusResponse = new aggregator::v1::GetStatusResponse();
zkassert(pGetStatusResponse != NULL);
// Call GetStatus
pAggregatorClient->GetStatus(*pGetStatusResponse);
// Set the get status response
proverMessage.set_allocated_get_status_response(pGetStatusResponse);
break;
}
case aggregator::v1::AggregatorMessage::RequestCase::kGenBatchProofRequest:
{
// Allocate a new gen batch proof response
aggregator::v1::GenBatchProofResponse * pGenBatchProofResponse = new aggregator::v1::GenBatchProofResponse();
zkassert(pGenBatchProofResponse != NULL);
// Call GenBatchProof
pAggregatorClient->GenBatchProof(aggregatorMessage.gen_batch_proof_request(), *pGenBatchProofResponse);
// Set the gen batch proof response
proverMessage.set_allocated_gen_batch_proof_response(pGenBatchProofResponse);
break;
}
case aggregator::v1::AggregatorMessage::RequestCase::kGenAggregatedProofRequest:
{
// Allocate a new gen aggregated proof response
aggregator::v1::GenAggregatedProofResponse * pGenAggregatedProofResponse = new aggregator::v1::GenAggregatedProofResponse();
zkassert(pGenAggregatedProofResponse != NULL);
// Call GenAggregatedProof
pAggregatorClient->GenAggregatedProof(aggregatorMessage.gen_aggregated_proof_request(), *pGenAggregatedProofResponse);
// Set the gen aggregated proof response
proverMessage.set_allocated_gen_aggregated_proof_response(pGenAggregatedProofResponse);
break;
}
case aggregator::v1::AggregatorMessage::RequestCase::kGenFinalProofRequest:
{
// Allocate a new gen final proof response
aggregator::v1::GenFinalProofResponse * pGenFinalProofResponse = new aggregator::v1::GenFinalProofResponse();
zkassert(pGenFinalProofResponse != NULL);
// Call GenFinalProof
pAggregatorClient->GenFinalProof(aggregatorMessage.gen_final_proof_request(), *pGenFinalProofResponse);
// Set the gen final proof response
proverMessage.set_allocated_gen_final_proof_response(pGenFinalProofResponse);
break;
}
case aggregator::v1::AggregatorMessage::RequestCase::kCancelRequest:
{
// Allocate a new cancel response
aggregator::v1::CancelResponse * pCancelResponse = new aggregator::v1::CancelResponse();
zkassert(pCancelResponse != NULL);
// Call Cancel
pAggregatorClient->Cancel(aggregatorMessage.cancel_request(), *pCancelResponse);
// Set the cancel response
proverMessage.set_allocated_cancel_response(pCancelResponse);
break;
}
case aggregator::v1::AggregatorMessage::RequestCase::kGetProofRequest:
{
// Allocate a new cancel response
aggregator::v1::GetProofResponse * pGetProofResponse = new aggregator::v1::GetProofResponse();
zkassert(pGetProofResponse != NULL);
// Call GetProof
pAggregatorClient->GetProof(aggregatorMessage.get_proof_request(), *pGetProofResponse);
// Set the get proof response
proverMessage.set_allocated_get_proof_response(pGetProofResponse);
break;
}
default:
{
cerr << "Error: aggregatorClientThread() received an invalid type=" << aggregatorMessage.request_case() << endl;
break;
}
}
// Write the prover message
bResult = readerWriter->Write(proverMessage);
if (!bResult)
{
cerr << "Error: aggregatorClientThread() failed calling readerWriter->Write(proverMessage)" << endl;
break;
}
switch (aggregatorMessage.request_case())
{
case aggregator::v1::AggregatorMessage::RequestCase::kGetStatusRequest:
case aggregator::v1::AggregatorMessage::RequestCase::kGenBatchProofRequest:
case aggregator::v1::AggregatorMessage::RequestCase::kGenAggregatedProofRequest:
case aggregator::v1::AggregatorMessage::RequestCase::kGenFinalProofRequest:
case aggregator::v1::AggregatorMessage::RequestCase::kCancelRequest:
cout << "aggregatorClientThread() sent: " << proverMessage.ShortDebugString() << endl;
break;
case aggregator::v1::AggregatorMessage::RequestCase::kGetProofRequest:
if (proverMessage.get_proof_response().result() != aggregator::v1::GetProofResponse_Result_RESULT_PENDING)
cout << "aggregatorClientThread() getProof() response sent; result=" << proverMessage.get_proof_response().result_string() << endl;
break;
default:
break;
}
if (pAggregatorClient->config.saveResponseToFile)
{
string2file(proverMessage.DebugString(), filePrefix + "aggregator_response.txt");
}
}
cout << "aggregatorClientThread() channel broken; will retry in 5 seconds" << endl;
sleep(5);
}
return NULL;
}
2.1 生成batch proof
当Aggregator调用Prover请求生成batch proof时,Prover会:
- 1)执行input data(a batch of EVM transactions)
- 2)calculate the resulting state
- 3)基于PIL polynomials definition和PIL polynomial constraints,为该calculation 生成proof。
- Executor模块(即Executor RPC server)中结合了14个状态机来处理input data,以 生成 生成proof 所需的 committed polynomials的evaluations。每个状态机会生成自己的computation evidence data,并将更复杂的证明计算委托给下一状态机。
- Prover模块(即Aggregator RPC client)会调用Stark模块,来为 Executor状态机的committed polynomials 生成proof。
2.2 生成aggregated proof
当Aggregator调用Prover请求生成aggregated proof时,Prover会:
- 将Aggregator所提供的之前的2个calculated batch proofs或aggregated proofs合并,生成一个aggregated proof。
2.3 生成 final proof
当Aggregator调用Prover请求生成final proof时,Prover会:
- 1)将Aggregator所提供的之前的一个calculated aggregated proof,生成一个可验证的final proof。
3. 作为Executor RPC server
作为Executor RPC server,其并不生成proof,(生成proof的工作由Aggregator RPC client模块完成),Executor会:
- 执行input data(a batch of EVM transactions),并计算the resulting state。
- 提供了一种快速的方式来检查:
- 所提议的batch of transactions是否正确构建,且其工作量是否适合在单个batch内进行证明。
- 当被Executor service调用时,Executor模块仅使用Main状态机。因此时不需要生成proof,也就不需要committed polynomials。
由其它节点服务(包括但不限于Aggregator)调用ProcessBatch
函数,详细的接口规范见executor.proto
:
service ExecutorService {
/// Processes a batch
rpc ProcessBatch(ProcessBatchRequest) returns (ProcessBatchResponse) {}
}
message ProcessBatchRequest {
bytes old_state_root = 1;
bytes old_acc_input_hash = 2;
uint64 old_batch_num = 3;
uint64 chain_id = 4;
uint64 fork_id = 5;
bytes batch_l2_data = 6;
bytes global_exit_root = 7;
uint64 eth_timestamp = 8;
string coinbase = 9;
uint32 update_merkle_tree = 10;
// flag to indicate that counters should not be taken into account
uint64 no_counters = 11;
// from is used for unsigned transactions with sender
string from = 12;
// For testing purposes only
map<string, string> db = 13;
map<string, string> contracts_bytecode = 14; // For debug/testing purpposes only. Don't fill this on production
TraceConfig trace_config = 15;
}
message ProcessBatchResponse {
bytes new_state_root = 1;
bytes new_acc_input_hash = 2;
bytes new_local_exit_root = 3;
uint64 new_batch_num = 4;
uint32 cnt_keccak_hashes = 5;
uint32 cnt_poseidon_hashes = 6;
uint32 cnt_poseidon_paddings = 7;
uint32 cnt_mem_aligns = 8;
uint32 cnt_arithmetics = 9;
uint32 cnt_binaries = 10;
uint32 cnt_steps = 11;
uint64 cumulative_gas_used = 12;
repeated ProcessTransactionResponse responses = 13;
ExecutorError error = 14;
map<string, InfoReadWrite> read_write_addresses = 15;
}
message ProcessTransactionResponse {
// Hash of the transaction
bytes tx_hash = 1;
// RLP encoded transaction
// [nonce, gasPrice, gasLimit, to, value, data, v, r, s]
bytes rlp_tx = 2;
// Type indicates legacy transaction
// It will be always 0 (legacy) in the executor
uint32 type = 3;
// Returned data from the runtime (function result or data supplied with revert opcode)
bytes return_value = 4;
// Total gas left as result of execution
uint64 gas_left = 5;
// Total gas used as result of execution or gas estimation
uint64 gas_used = 6;
// Total gas refunded as result of execution
uint64 gas_refunded = 7;
// Any error encountered during the execution
RomError error = 8;
// New SC Address in case of SC creation
string create_address = 9;
// State Root
bytes state_root = 10;
// Logs emited by LOG opcode
repeated Log logs = 11;
// Trace
repeated ExecutionTraceStep execution_trace = 13;
CallTrace call_trace = 14;
}
4. 作为StateDB RPC server
StateDB服务:
- 提供了访问system state(为a Merkle tree)的接口,以及访问该state所存储database的接口
- 供Executor和Prover模块使用,作为state的唯一源。可用于获取state details,如account balances。
详细的接口规范见statedb.proto
:
/**
* Define all methods implementes by the gRPC
* Get: get the value for a specific key
* Set: set the value for a specific key
* SetProgram: set the byte data for a specific key
* GetProgram: get the byte data for a specific key
* Flush: wait for all the pendings writes to the DB are done
*/
service StateDBService {
rpc Set(SetRequest) returns (SetResponse) {}
rpc Get(GetRequest) returns (GetResponse) {}
rpc SetProgram(SetProgramRequest) returns (SetProgramResponse) {}
rpc GetProgram(GetProgramRequest) returns (GetProgramResponse) {}
rpc LoadDB(LoadDBRequest) returns (google.protobuf.Empty) {}
rpc LoadProgramDB(LoadProgramDBRequest) returns (google.protobuf.Empty) {}
rpc Flush (google.protobuf.Empty) returns (FlushResponse) {}
}
其提供了6个RPC接口:
-
1)rpc Set(SetRequest) returns (SetResponse) {}:
/** * @dev SetRequest * @param {old_root} - merkle-tree root * @param {key} - key to set * @param {value} - scalar value to set (HEX string format) * @param {persistent} - indicates if it should be stored in the SQL database (true) or only in the memory cache (false) * @param {details} - indicates if it should return all response parameters (true) or just the new root (false) * @param {get_db_read_log} - indicates if it should return the DB reads generated during the execution of the request */ message SetRequest { Fea old_root = 1; Fea key = 2; string value = 3; bool persistent = 4; bool details = 5; bool get_db_read_log = 6; } /** * @dev SetResponse * @param {old_root} - merkle-tree root * @param {new_root} - merkle-tree new root * @param {key} - key to look for * @param {siblings} - array of siblings * @param {ins_key} - key found * @param {ins_value} - value found (HEX string format) * @param {is_old0} - is new insert or delete * @param {old_value} - old value (HEX string format) * @param {new_value} - new value (HEX string format) * @param {mode} * @param {proof_hash_counter} * @param {db_read_log} - list of db records read during the execution of the request * @param {result} - result code */ message SetResponse { Fea old_root = 1; Fea new_root = 2; Fea key = 3; map<uint64, SiblingList> siblings = 4; Fea ins_key = 5; string ins_value = 6; bool is_old0 = 7; string old_value = 8; string new_value = 9; string mode = 10; uint64 proof_hash_counter = 11; map<string, FeList> db_read_log = 12; ResultCode result = 13; }
-
2)rpc Get(GetRequest) returns (GetResponse) {}:
/** * @dev GetRequest * @param {root} - merkle-tree root * @param {key} - key to look for * @param {details} - indicates if it should return all response parameters (true) or just the new root (false) * @param {get_db_read_log} - indicates if it should return the DB reads generated during the execution of the request */ message GetRequest { Fea root = 1; Fea key = 2; bool details = 3; bool get_db_read_log = 4; } /** * @dev GetResponse * @param {root} - merkle-tree root * @param {key} - key to look for * @param {siblings} - array of siblings * @param {ins_key} - key found * @param {ins_value} - value found (HEX string format) * @param {is_old0} - is new insert or delete * @param {value} - value retrieved (HEX string format) * @param {proof_hash_counter} * @param {db_read_log} - list of db records read during the execution of the request * @param {result} - result code */ message GetResponse { Fea root = 1; Fea key = 2; map<uint64, SiblingList> siblings = 3; Fea ins_key = 4; string ins_value = 5; bool is_old0 = 6; string value = 7; uint64 proof_hash_counter = 8; map<string, FeList> db_read_log = 9; ResultCode result = 10; }
-
3)rpc SetProgram(SetProgramRequest) returns (SetProgramResponse) {}:
/** * @dev SetProgramRequest * @param {key} - key to set * @param {data} - Program data to store * @param {persistent} - indicates if it should be stored in the SQL database (true) or only in the memory cache (false) */ message SetProgramRequest { Fea key = 1; bytes data = 2; bool persistent = 3; } /** * @dev SetProgramResponse * @param {result} - result code */ message SetProgramResponse { ResultCode result = 1; }
-
4)rpc GetProgram(GetProgramRequest) returns (GetProgramResponse) {}:
/**
* @dev GetProgramRequest
* @param {key} - key to get program data
*/
message GetProgramRequest {
Fea key = 1;
}
/**
* @dev GetProgramResponse
* @param {data} - program data retrieved
* @param {result} - result code
*/
message GetProgramResponse {
bytes data = 1;
ResultCode result = 2;
}
-
5)rpc LoadDB(LoadDBRequest) returns (google.protobuf.Empty) {}:
/** * @dev LoadDBRequest * @param {input_db} - list of db records (MT) to load in the database * @param {persistent} - indicates if it should be stored in the SQL database (true) or only in the memory cache (false) */ message LoadDBRequest { map<string, FeList> input_db = 1; bool persistent = 2; }
-
6)rpc LoadProgramDB(LoadProgramDBRequest) returns (google.protobuf.Empty) {}:
/** * @dev LoadProgramDBRequest * @param {input_program_db} - list of db records (program) to load in the database * @param {persistent} - indicates if it should be stored in the SQL database (true) or only in the memory cache (false) */ message LoadProgramDBRequest { map<string, bytes> input_program_db = 1; bool persistent = 2; }
-
7)rpc Flush (google.protobuf.Empty) returns (FlushResponse) {}:
/** * @dev FlushResponse * @param {result} - result code */ message FlushResponse { ResultCode result = 1; }
其中:
/**
* @dev Array of 4 FE
* @param {fe0} - Field Element value for pos 0
* @param {fe1} - Field Element value for pos 1
* @param {fe2} - Field Element value for pos 2
* @param {fe3} - Field Element value for pos 3
*/
message Fea {
uint64 fe0 = 1;
uint64 fe1 = 2;
uint64 fe2 = 3;
uint64 fe3 = 4;
}
/**
* @dev FE (Field Element) List
* @param {fe} - list of Fe
*/
message FeList {
repeated uint64 fe = 1;
}
/**
* @dev Siblings List
* @param {sibling} - list of siblings
*/
message SiblingList {
repeated uint64 sibling = 1;
}
/**
* @dev Result code
* @param {code} - result code
*/
message ResultCode {
enum Code {
CODE_UNSPECIFIED = 0;
CODE_SUCCESS = 1;
CODE_DB_KEY_NOT_FOUND = 2; // Requested key was not found in database
CODE_DB_ERROR = 3; // Error connecting to database, or processing request
CODE_INTERNAL_ERROR = 4;
CODE_SMT_INVALID_DATA_SIZE = 14; // Invalid size for the data of MT node
}
Code code = 1;
}
参考资料
[1] zkEVM Prover说明
附录:Polygon Hermez 2.0 zkEVM系列博客
- ZK-Rollups工作原理
- Polygon zkEVM——Hermez 2.0简介
- Polygon zkEVM网络节点
- Polygon zkEVM 基本概念
- Polygon zkEVM Prover
- Polygon zkEVM工具——PIL和CIRCOM
- Polygon zkEVM节点代码解析
- Polygon zkEVM的pil-stark Fibonacci状态机初体验
- Polygon zkEVM的pil-stark Fibonacci状态机代码解析
- Polygon zkEVM PIL编译器——pilcom 代码解析
- Polygon zkEVM Arithmetic状态机
- Polygon zkEVM中的常量多项式
- Polygon zkEVM Binary状态机
- Polygon zkEVM Memory状态机
- Polygon zkEVM Memory Align状态机
- Polygon zkEVM zkASM编译器——zkasmcom
- Polygon zkEVM哈希状态机——Keccak-256和Poseidon
- Polygon zkEVM zkASM语法
- Polygon zkEVM可验证计算简单状态机示例
- Polygon zkEVM zkASM 与 以太坊虚拟机opcode 对应集合
- Polygon zkEVM zkROM代码解析(1)
- Polygon zkEVM zkASM中的函数集合
- Polygon zkEVM zkROM代码解析(2)
- Polygon zkEVM zkROM代码解析(3)
- Polygon zkEVM公式梳理
- Polygon zkEVM中的Merkle tree
- Polygon zkEVM中Goldilocks域元素circom约束
- Polygon zkEVM Merkle tree的circom约束
- Polygon zkEVM FFT和多项式evaluate计算的circom约束
- Polygon zkEVM R1CS与Plonk电路转换
- Polygon zkEVM中的子约束系统
- Polygon zkEVM交易解析
- Polygon zkEVM 审计及递归证明
- Polygon zkEVM发布公开测试网2.0
- Polygon zkEVM测试集——创建合约交易
- Polygon zkEVM中的Recursive STARKs
- Polygon zkEVM的gas定价
- Polygon zkEVM zkProver基本设计原则 以及 Storage状态机
- Polygon zkEVM bridge技术文档
- Polygon zkEVM Trustless L2 State Management 技术文档
- Polygon zkEVM中的自定义errors
- Polygon zkEVM RPC服务