您现在的位置是:首页 >其他 >06. 数据结构之散列表网站首页其他

06. 数据结构之散列表

wlyang666 2024-07-01 12:01:02
简介06. 数据结构之散列表

前言

散列表也叫作哈希表(hash table),这种数据结构提供了键(Key)和值(Value)的映射关系。只要给出一个Key,就可以高效查找到它所匹配的Value,时间复杂度接近于O(1)

1. 概念

散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。给定表M,存在函数f(key),对任意给定的关键字值key,代入函数后若能得到包含该关键字的记录在表中的地址,则称表M为哈希(Hash)表,函数f(key)为哈希(Hash) 函数。

2. 存储原理

2.1 散列表存储简介

散列表在本质上也是一个数组。散列表的Key则是以字符串类型为主的,通过hash函数把Key和数组下标进行转换,作用是把任意长度的输入通过散列算法转换成固定类型、固定长度的散列值

//数组下标=取key的hashcode模数组的长度后的余数
index = HashCode (Key) % Array.length
int index=Math.abs("Hello".hashCode())%10;0-9

如上代码所示,是一种比较简单的计算方式。

实际应用中,会有很多的hash函数:CRC16、CRC32、siphash 、murmurHash、times 33等,此种Hash计算方式为固定Hash方式,也称为传统Hash。该方式在数组固定时,可以快速检索,但当数组长度变化时,需要重新计算数组下标,所以说传统Hash法虽然比较简单,但不利于扩展,如果要扩展可以采用一致性Hash

2.2 一致性哈希介绍

上面提到,常规的哈希算法可以实现快速检索,但是不利于扩展,当哈希表长度不够的时候,扩容的话,所有内容需要重新哈希。此时成本会比较大,为此,一致性哈希方式被提了出来。

关于一致性哈希更多介绍,因为内容较多,拆到另外一个博客讲解。

3. 操作

3.1 写

写操作就是在散列表中插入新的键值对

  1. 通过哈希函数,把Key转化成数组下标
  2. 如果数组下标对应的位置没有元素,就把这个Entry填充到数组下标的位置。

3.2 读

读操作就是通过给定的Key,在散列表中查找对应的Value

  1. 通过哈希函数,把Key转化成数组下标
  2. 找到数组下标所对应的元素,如果key不正确,说明产生了hash冲突,则顺着头节点遍历该单链表,再根据key即可取值

3.3 扩容

散列表是基于数组实现的,当经过多次元素插入,散列表达到一定饱和度时,Key映射位置发生冲突的概率会逐渐提高。这样一来,大量元素拥挤在相同的数组下标位置,形成很长的链表,对后续插入操作和查询操作的性能都有很大影响。

扩容的步骤:

  1. 扩容,创建一个新的Entry空数组,长度是原数组的2倍
  2. 重新Hash,遍历原Entry数组,把所有的Entry重新Hash到新数组中

关于HashMap的实现,JDK 8和以前的版本有着很大的不同。当多个Entry被Hash到同一个数组下标位置时,为了提升插入和查找的效率,HashMap会把Entry的链表转化为红黑树这种数据结构JDK1.8前在HashMap扩容时,会反序单链表,这样在高并发时会有死循环的可能。

3.4 代码实现

3.4.1 定义链表节点

package org.wanlong.hash;

/**
 * @author wanlong
 * @version 1.0
 * @description: 链表节点
 * @date 2023/5/24 15:23
 */
public class Node {

    String key;
    String value;
    // 指向下一个结点
    Node next;

    public Node(String key, String value, Node next) {
        this.key = key;
        this.value = value;
        this.next = next;
    }
}

3.4.2 定义链表

package org.wanlong.hash;

/**
 * @author wanlong
 * @version 1.0
 * @description: 链表实现
 * @date 2023/5/24 15:23
 */
public class ListNode {

    Node head; //头结点

    public void addNode(String key, String value) {

        if (head == null)
            return;
        // 创建结点
        Node node = new Node(key, value, null);
        // 临时变量
        Node tmp = head;
        //循环遍历单链表
        while (true) {
            //key相同覆盖值 从head开始
            if (key.equals(tmp.key)) {
                tmp.value = value;
                break;
            }
            if (tmp.next == null) {
                break;
            }
            //指向下一个
            tmp = tmp.next;
        }
        //在循环外挂载最后一个结点
        tmp.next = node;
    }


    /**
     * @param key:
     * @return java.lang.String
     * @Description: 从链表获取值
     * @Author: wanlong
     * @Date: 2023/5/24 15:27
     **/
    public String getVal(String key) {
        if (head == null)
            return null;
        //只有一个结点
        if (head.next == null) {
            return head.value;
        } else {
            //遍历单链表
            Node tmp = head;
            while (tmp != null) {
                //找到匹配的key
                if (key.equals(tmp.key)) {
                    return tmp.value;
                }
                //指向下一个
                tmp = tmp.next;
            }
            return null;
        }
    }
}

3.4.3 散列表实现

package org.wanlong.hash;

/**
 * @author wanlong
 * @version 1.0
 * @description: 测试 哈希map
 * @date 2023/5/24 15:24
 */
public class TestHashMap {

    //数组初始化 2的3次方
    ListNode[] map = new ListNode[8];
    //ListNode的个数
    int size;

    /**
     * @param key:
     * @param value:
     * @return void
     * @Description: 往map放值
     * @Author: wanlong
     * @Date: 2023/5/24 15:29
     **/
    public void put(String key, String value) {
        //该扩容了 这里0.75 是负载因子,jdk源码也是这个值 这里需要扩容直接报错
        if (size >= map.length * 0.75) {
            System.out.println("map需要扩容");
            ListNode[] tempMap=map;
            map=resize();
            //释放引用,交给jvm回收
            tempMap=null;
        }
        //计算索引 数组下标
        int index = Math.abs(key.hashCode()) % map.length;
        //获得该下标处的ListNode
        ListNode ln = map[index];
        //该下标处无值
        if (ln == null) {
            //创建单链表
            ListNode lnNew = new ListNode();
            //创建头结点
            Node head = new Node(key, value, null);
            //挂载头结点
            lnNew.head = head;
            //把单链放到数组里
            map[index] = lnNew;
            size++;
        } else {
            //该下标有值,hash碰撞单链表挂结点
            ln.addNode(key, value);
        }
    }

    /***
     * @Description: 扩容方法,将原来集合中的数据,放到新的map中
     * @Author: wanlong
     * @Date: 2023/5/24 15:54
     * @return org.wanlong.hash.ListNode[]
     **/
    private ListNode[] resize(){
        //容量扩大两倍
        ListNode[] newListNodes = new ListNode[map.length * 2];
        //原来的数据重新哈希,放入新的哈希表中
        for (int i = 0; i < map.length; i++) {
            ListNode listNode = map[i];
            if (listNode!=null){
                Node head = listNode.head;
                //遍历单链表,取出每个元素,放到新链表里面
                while (head!=null){
                    String key = head.key;
                    String value = head.value;
                    //计算索引 数组下标
                    int index = Math.abs(key.hashCode()) % newListNodes.length;
                    //获得该下标处的ListNode
                    ListNode ln = newListNodes[index];
                    //该下标处无值
                    if (ln == null) {
                        //创建单链表
                        ListNode lnNew = new ListNode();
                        //创建头结点
                        Node nodeHead = new Node(key, value, null);
                        //挂载头结点
                        lnNew.head = nodeHead;
                        //把单链放到数组里
                        newListNodes[index] = lnNew;
                    } else {
                        //该下标有值,hash碰撞单链表挂结点
                        ln.addNode(key, value);
                    }
                    //下一个节点
                    head=head.next;
                }
            }
        }
        return newListNodes;
    }

    public String get(String key) {
        int index = Math.abs(key.hashCode()) % map.length;
        ListNode ln = map[index];
        if (ln == null)
            return null;
        return ln.getVal(key);
    }
}

3.4.4 测试类

package org.wanlong.hash;

import org.junit.Test;

/**
 * @author wanlong
 * @version 1.0
 * @description:
 * @date 2023/5/24 15:45
 */
public class Client {

    @Test
    public void testMap() {
        TestHashMap testHashMap = new TestHashMap();
        testHashMap.put("1", "wo");
        testHashMap.put("2", "shi");
        testHashMap.put("3", "dai");
        testHashMap.put("4", "zi");
        testHashMap.put("5", "cai");
        testHashMap.put("6", "cai");
        testHashMap.put("7", "wo");
        testHashMap.put("8", "shi");
        testHashMap.put("9", "shui");

        for (int i = 1; i <= 9; i++) {
            String key = "" + i;
            System.out.println("key:" + key + "的值为:" + testHashMap.get(key));
        }

    }
}

3.4.5 运行结果以及分析

map需要扩容
key:1的值为:wo
key:2的值为:shi
key:3的值为:dai
key:4的值为:zi
key:5的值为:cai
key:6的值为:cai
key:7的值为:wo
key:8的值为:shi
key:9的值为:shui

通过运行结果可以看到,我们散列表初始长度设置的是8 ,因为添加了9个元素,在添加的时候,实现了扩容,里面添加的元素正常打印。这个要留意一个细节,其实不是添加到8个元素的时候才开始扩容,而是当元素个数大于容量*负载因子的时候就开始扩容了。

示例代码中用到的负载因子,也是java8 中HashMap的默认负载因子。

4. 时间复杂度

  1. 写操作: O(1) + O(m) = O(m) m为单链元素个数
  2. 读操作:O(1) + O(m) m为单链元素个数
  3. Hash冲突写单链表:O(m)
  4. Hash扩容:O(n) n是数组元素个数 rehash
  5. Hash冲突读单链表:O(m) m为单链元素个数

5. 优缺点

5.1 优点

读写快

5.2 缺点

  1. 哈希表中的元素是没有被排序的
  2. Hash冲突如果频繁发生,散列表会退化为链表
  3. 散列表需要扩容的时候, 重新计算散列表中所有元素在新的散列表中的位置

6. 应用

6.1 redis 字典

Redis字典dict又称散列表(hash),是用来存储键值对的一种数据结构。Redis整个数据库是用字典来存储的(K-V结构)。对Redis进行CURD操作其实就是对字典中的数据进行CURD操作。Redis字典实现包括:字典(dict)、Hash表(dictht)、Hash表节点(dictEntry)。
在这里插入图片描述

6.2 布隆过滤器

6.2.1 布隆过滤器简介

布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机hash映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法。
在这里插入图片描述

6.2.2 布隆过滤器原理

当一个元素被加入集合时,通过K个Hash函数将这个元素映射成一个数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。这就是布隆过滤器的基本思想

简单来说:因为哈希算法,

  1. 同样的key,同样的哈希函数,一定会得到同样的摘要值。
  2. 同样的key A,用K个哈希算法来计算,一定会得到K个固定的值。
  3. 那么如果有一个Key B ,我们通过同样的K 个哈希算法计算 得到 K 个值,如果这K 个值 和前面的K 个值不完全一样,那么Key B一定和KeyA 不相等。

由此可得,布隆过滤器在检索一个元素是否在一个集合中可以做出如下判断:

  1. 如果Key多次哈希的值都能命中,说明这个key 可能在集合中
  2. 如果Key多次哈希的值有某一个对不上,说明这个Key一定不存在

6.3 位图

Bitmap 的基本原理就是用一个 bit 来标记某个元素对应的 Value,而Key即是该元素。由于采用一个bit 来存储一个数据,因此可以大大的节省空间。Java 中 int 类型占用 4 个字节,即 4 byte,又 1 byte = 8 bit,所以 一个 int 数字的表示大概如下:
在这里插入图片描述
试想以下,如果有一个很大的 int 数组,如 10000000,数组中每一个数值都要占用 4 个字节,则一共需要占用 10000000 * 4 = 40000000 个字节,即 40000000 / 1024.0 / 1024.0 = 38 M。

如果使用 bit 来存放上述 10000000 个元素,只需要 10000000 个 bit 即可, 10000000 / 8.0 / 1024.0/ 1024.0 = 1.19 M 左右,可以看到 bitmap 可以大大的节约内存。使用 bit 来表示数组 [1, 2, 5] 如下所示,可以看到只用 1 字节即可表示:
在这里插入图片描述

7.HashMap源码解析

7.1 源码注释翻译

package java.util;

import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.Serializable;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.Function;
import sun.misc.SharedSecrets;

/**
 * Hash table based implementation of the <tt>Map</tt> interface.  This
 * implementation provides all of the optional map operations, and permits
 * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
 * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
 * unsynchronized and permits nulls.)  This class makes no guarantees as to
 * the order of the map; in particular, it does not guarantee that the order
 * will remain constant over time.
 *
 * 基于哈希表的Map接口实现,hashmap提供了所有map相关操作。允许null 作为key 和 value
 * (hashmap和hashtable 很相似,唯一的差别是hashmap 不是线程安全的,允许空元素)
 * hashmap 不保证元素的顺序,特别要说明的是,hashmap也不保证顺序一直不变
 *
 * <p>This implementation provides constant-time performance for the basic
 * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
 * disperses the elements properly among the buckets.  Iteration over
 * collection views requires time proportional to the "capacity" of the
 * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
 * of key-value mappings).  Thus, it's very important not to set the initial
 * capacity too high (or the load factor too low) if iteration performance is
 * important.
 *
 * 如果哈希函数能把元素正确均匀的分配在一个个桶里,基本操作(get和put)性能是很好的。
 * 对集合视图的迭代需要与HashMap实例的“容量”(bucket的数量)加上其大小(键值映射的数量)成比例的时间
 * 因此,如果关注迭代性能,不要把初始化容量设置的太高(或者设置负载因子太低)
 *
 *
 * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
 * performance: <i>initial capacity</i> and <i>load factor</i>.  The
 * <i>capacity</i> is the number of buckets in the hash table, and the initial
 * capacity is simply the capacity at the time the hash table is created.  The
 * <i>load factor</i> is a measure of how full the hash table is allowed to
 * get before its capacity is automatically increased.  When the number of
 * entries in the hash table exceeds the product of the load factor and the
 * current capacity, the hash table is <i>rehashed</i> (that is, internal data
 * structures are rebuilt) so that the hash table has approximately twice the
 * number of buckets.
 *
 * 一个hashmap对象有两个因素影响性能,初始化容量capacity和负载因子load factor。容量是散列表中桶的数量,
 * capacity是散列表中桶的数量,初始化capacity是在散列表创建的时候的容量。
 * 载因子load factor是一种度量方式,表中元素达到容量的多少的时候,需要自动扩容
 * 当表中的元素达到 负载因子* 容量 ,散列表重新哈希(内部数据结构重建)。容量会*2
 *
 * <p>As a general rule, the default load factor (.75) offers a good
 * tradeoff between time and space costs.  Higher values decrease the
 * space overhead but increase the lookup cost (reflected in most of
 * the operations of the <tt>HashMap</tt> class, including
 * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in
 * the map and its load factor should be taken into account when
 * setting its initial capacity, so as to minimize the number of
 * rehash operations.  If the initial capacity is greater than the
 * maximum number of entries divided by the load factor, no rehash
 * operations will ever occur.
 *
 * 作为一个通用规则,默认的负载因子(0.75)在时间和内存空间开销上面表现良好,所以一般不建议调整这个参数
 * 更高的负载因子减少了存储空间消耗但是增加了hashmap查询时间(包括get和put操作)
 * 当设置初始容量的时候,map存储的元素预期个数和它的负载因子应该考虑在内,以便能减少重新扩容,重新哈希的次数
 * 如果初始化容量* 负载因子 大于 预期的最大元素个数,那么map不需要扩容,重新哈希,此时性能会比较高
 *
 * <p>If many mappings are to be stored in a <tt>HashMap</tt>
 * instance, creating it with a sufficiently large capacity will allow
 * the mappings to be stored more efficiently than letting it perform
 * automatic rehashing as needed to grow the table.  Note that using
 * many keys with the same {@code hashCode()} is a sure way to slow
 * down performance of any hash table. To ameliorate impact, when keys
 * are {@link Comparable}, this class may use comparison order among
 * keys to help break ties.
 *
 * 如果确定知道map要存储大量的元素,创建一个大容量的map来存储元素
 * 比让hashmap随着元素个数增多,多次重新哈希效率要高得多
 * 要注意如果很多存储元素的key的hashcode一样的话,一定会拖慢散列表的性能,因为这会退化为链表
 * 为了改善这种情况,当键为{@link-Comparable}时,此类可以使用键之间的比较顺序来帮助打破联系。
 *
 *
 * <p><strong>Note that this implementation is not synchronized.</strong>
 * If multiple threads access a hash map concurrently, and at least one of
 * the threads modifies the map structurally, it <i>must</i> be
 * synchronized externally.  (A structural modification is any operation
 * that adds or deletes one or more mappings; merely changing the value
 * associated with a key that an instance already contains is not a
 * structural modification.)  This is typically accomplished by
 * synchronizing on some object that naturally encapsulates the map.
 *
 * 注意hashmap 不是线程安全的。如果多个现在并发的访问一个map对象,某个线程修改结构,需要调用端在外面加锁。
 *
 *
 * If no such object exists, the map should be "wrapped" using the
 * {@link Collections#synchronizedMap Collections.synchronizedMap}
 * method.  This is best done at creation time, to prevent accidental
 * unsynchronized access to the map:<pre>
 *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 *
 *   可以在创建的时候使用这种封装的方式加锁 Map m = Collections.synchronizedMap(new HashMap(...));
 *
 * <p>The iterators returned by all of this class's "collection view methods"
 * are <i>fail-fast</i>: if the map is structurally modified at any time after
 * the iterator is created, in any way except through the iterator's own
 * <tt>remove</tt> method, the iterator will throw a
 * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 * modification, the iterator fails quickly and cleanly, rather than risking
 * arbitrary, non-deterministic behavior at an undetermined time in the
 * future.
 *
 * 这个类的所有“集合视图方法”返回的迭代器是fail-fast:在迭代器创建后,除了迭代器自己的remove方法外,这个map发生任何结构性变化
 * 迭代器会抛出异常ConcurrentModificationException
 * 因此,面对并发修改的时候,迭代器快速干净失败,而不是把风险留给将来,以免发生预期之外的影响
 *
 *
 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness: <i>the fail-fast behavior of iterators
 * should be used only to detect bugs.</i>
 *
 *
  * 注意,迭代器的快速失败行为不能确保一定生效。通常来说,在一个不加同步锁的并发修改中,做出任何坚决保证是不可能的。
 * Fail-fast iterators 尽最大努力会抛出ConcurrentModificationException异常
 * 因此,写一个 依赖这个异常 确保程序正确性 是不正确的做法,迭代器的快速失败行为应该只是用来检测bug
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @param <K> the type of keys maintained by this map
 * @param <V> the type of mapped values
 *
 * @author  Doug Lea
 * @author  Josh Bloch
 * @author  Arthur van Hoff
 * @author  Neal Gafter
 * @see     Object#hashCode()
 * @see     Collection
 * @see     Map
 * @see     TreeMap
 * @see     Hashtable
 * @since   1.2
 */
public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {

    private static final long serialVersionUID = 362498820763181265L;

    /*
     * Implementation notes.
     *
     * This map usually acts as a binned (bucketed) hash table, but
     * when bins get too large, they are transformed into bins of
     * TreeNodes, each structured similarly to those in
     * java.util.TreeMap. Most methods try to use normal bins, but
     * relay to TreeNode methods when applicable (simply by checking
     * instanceof a node).  Bins of TreeNodes may be traversed and
     * used like any others, but additionally support faster lookup
     * when overpopulated. However, since the vast majority of bins in
     * normal use are not overpopulated, checking for existence of
     * tree bins may be delayed in the course of table methods.
     *
     * 这个map通常是链表,但是当元素太多的时候,节点转换为树节点,(每个树节点和java.util.TreeMap里面的类似)
     * 大多数方法使用普通的散列表,合适的时候调整到树节点方法(只需检查节点的实例)
     * 树节点使用和其他一样,但是当元素很多的时候会提供更高的查询性能。
     * 但是,通常情况下,大多数map存不了很多元素,此时使用树因为涉及到树结构调整,可能会比链表性能还差
     *
     * Tree bins (i.e., bins whose elements are all TreeNodes) are
     * ordered primarily by hashCode, but in the case of ties, if two
     * elements are of the same "class C implements Comparable<C>",
     * type then their compareTo method is used for ordering. (We
     * conservatively check generic types via reflection to validate
     * this -- see method comparableClassFor).  The added complexity
     * of tree bins is worthwhile in providing worst-case O(log n)
     * operations when keys either have distinct hashes or are
     * orderable, Thus, performance degrades gracefully under
     * accidental or malicious usages in which hashCode() methods
     * return values that are poorly distributed, as well as those in
     * which many keys share a hashCode, so long as they are also
     * Comparable. (If neither of these apply, we may waste about a
     * factor of two in time and space compared to taking no
     * precautions. But the only known cases stem from poor user
     * programming practices that are already so slow that this makes
     * little difference.)
     *
     * 树的节点主要是根据元素的hashcode排序,但是在关联的过程中,如果两个元素是同样的(类实现了Comparable接口),
     * 会用接口定义的compareTo方法做排序(我们适当的通过反射校验类型来验证这一点  详见comparableClassFor方法)
     * 当key既没有hash分散到不同的位置,也不是有序的时候,操作树节点的时间复杂度是O(log n),是值得的
     * 因此,当元素的hashcode()返回的值不是均衡分布的,或者很多的key用同一个hashcode, 只要它们也是可比较的,
     * 这种意外或者恶意使用会导致元素操作性能适度下降。
     * (如果两者都不适用,比起不采取预防措施,我们可能会花费两边的时间在时间和空间上面
     * 但唯一已知的案例源于糟糕的用户编程实践,这些实践已经非常缓慢,几乎没有什么区别)
     * todo
     *
     * Because TreeNodes are about twice the size of regular nodes, we
     * use them only when bins contain enough nodes to warrant use
     * (see TREEIFY_THRESHOLD). And when they become too small (due to
     * removal or resizing) they are converted back to plain bins.  In
     * usages with well-distributed user hashCodes, tree bins are
     * rarely used.  Ideally, under random hashCodes, the frequency of
     * nodes in bins follows a Poisson distribution
     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
     * parameter of about 0.5 on average for the default resizing
     * threshold of 0.75, although with a large variance because of
     * resizing granularity. Ignoring variance, the expected
     * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
     * factorial(k)). The first values are:
     *
     * 0:    0.60653066
     * 1:    0.30326533
     * 2:    0.07581633
     * 3:    0.01263606
     * 4:    0.00157952
     * 5:    0.00015795
     * 6:    0.00001316
     * 7:    0.00000094
     * 8:    0.00000006
     * more: less than 1 in ten million
     *
     * 因为树节点是常规节点两倍大小,我们只有当包含足够多的节点的时候再使用它。详见TREEIFY_THRESHOLD
     * 当删除元素或者重置大小的时候树节点很少,树节点会退化为普通链表节点
     * 在哈希算法分布的很好的情况下,树节点这种方式是很少使用的
     * 理想情况下,在随机的hashcode下,节点的频率遵循泊松分布(http://en.wikipedia.org/wiki/Poisson_distribution)
     * 对于默认调整大小阈值0.75,平均约为0.5 ,尽管由于调整粒度的原因,差异很大
     * 忽略误差,期待的数组大小占用k 是  exp(-0.5) * pow(0.5, k) /factorial(k)
     *
     * 0:    0.60653066
     * 1:    0.30326533
     * 2:    0.07581633
     * 3:    0.01263606
     * 4:    0.00157952
     * 5:    0.00015795
     * 6:    0.00001316
     * 7:    0.00000094
     * 8:    0.00000006
     * 更大的: 小于千万分之一
     *
     *
     * The root of a tree bin is normally its first node.  However,
     * sometimes (currently only upon Iterator.remove), the root might
     * be elsewhere, but can be recovered following parent links
     * (method TreeNode.root()).
     *
     * 树的根节点通常是第一个节点,然而,有时候(当前仅在Iterator.remove上),根节点可能在其他地方
     * 但是,可以沿着父链接恢复(TreeNode.root())
     *
     * All applicable internal methods accept a hash code as an
     * argument (as normally supplied from a public method), allowing
     * them to call each other without recomputing user hashCodes.
     * Most internal methods also accept a "tab" argument, that is
     * normally the current table, but may be a new or old one when
     * resizing or converting.
     *
     * 所有适用的内部方法都接受哈希代码作为参数(通常由公共方法提供)
     * 允许他们调用不重新计算哈希码
     * 大多数内部方法也接受一个tab参数,通常是当前的table表,但是当重置大小或者转换的时候,
     * 也可能 是之前的或者新的表
     *
     *
     *
     * When bin lists are treeified, split, or untreeified, we keep
     * them in the same relative access/traversal order (i.e., field
     * Node.next) to better preserve locality, and to slightly
     * simplify handling of splits and traversals that invoke
     * iterator.remove. When using comparators on insertion, to keep a
     * total ordering (or as close as is required here) across
     * rebalancings, we compare classes and identityHashCodes as
     * tie-breakers.
     *
     * 当bin列表被树化、拆分或未搜索时,
     * 我们将它们保持在相同的相对访问/遍历顺序(即字段Node.next)中,
     * 以更好地保留局部性,并稍微简化调用迭代器.remove的拆分和遍历的处理。
     * 当在插入的时候使用比较器的时候,通过重新平衡保持全局有序,
     * 我们将类和identityHashCodes作为平局决胜器进行比较。
     *
     *
     *
     *
     * The use and transitions among plain vs tree modes is
     * complicated by the existence of subclass LinkedHashMap. See
     * below for hook methods defined to be invoked upon insertion,
     * removal and access that allow LinkedHashMap internals to
     * otherwise remain independent of these mechanics. (This also
     * requires that a map instance be passed to some utility methods
     * that may create new nodes.)
     *
     * 普通模式与树模式之间的使用和转换
     * 因子类LinkedHashMap的存在而变得复杂。
     * 请参阅以下内容,了解定义为在插入、移除和访问时调用的钩子方法,
     * 这些方法允许LinkedHashMap内部保持独立于这些机制。
     * (这也要求将map对象传递给一些可能创建新节点的公共程序方法。)
     *
     * The concurrent-programming-like SSA-based coding style helps
     * avoid aliasing errors amid all of the twisty pointer operations.
     *
     * 基于SSA的并发编程风格有助于避免在所有扭曲的指针操作中出现混叠错误。
     *
     */

    /**
     * The default initial capacity - MUST be a power of two.
     *
     * 默认初始化容量,必须是2 的幂
     * 下面左移四位相当于 1 * 2 的 四次方
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     *
     * 最大容量,如果一个更大的值被通过构造器参数指定,必须是一个小于 2的30次方的 2的幂
     *
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The load factor used when none specified in constructor.
     * 默认的负载因子
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     *
     * 使用树而不是列表作为垃圾箱的垃圾箱计数阈值。
     * 当向至少有这么多节点的bin添加元素时,bin会转换为树。
     * 该值必须大于2,并且应至少为8,以符合移除树木时关于在shrinka转换回普通垃圾箱的假设
     *
     *
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     *
     * 在调整大小操作期间,用于取消搜索(拆分)垃圾箱的垃圾箱计数阈值。
     * 应小于TREEIFY_THRESHOLD,且最多为6,以便在移除时进行收缩检测。
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     *
     *  可以将存储箱树化的最小表容量。
     *  (否则,如果一个bin中的节点太多,则会调整表的大小。)
     *  应至少为4*TREEIFY_THRESHOLD,以避免调整大小阈值和树化阈值之间的冲突。
     *
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    /**
     * Basic hash bin node, used for most entries.  (See below for
     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     *
     * 大多数entry用到的,基本的哈希 node
     *
     */
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

    /* ---------------- Static utilities -------------- */

    /**
     * Computes key.hashCode() and spreads (XORs) higher bits of hash
     * to lower.  Because the table uses power-of-two masking, sets of
     * hashes that vary only in bits above the current mask will
     * always collide. (Among known examples are sets of Float keys
     * holding consecutive whole numbers in small tables.)  So we
     * apply a transform that spreads the impact of higher bits
     * downward. There is a tradeoff between speed, utility, and
     * quality of bit-spreading. Because many common sets of hashes
     * are already reasonably distributed (so don't benefit from
     * spreading), and because we use trees to handle large sets of
     * collisions in bins, we just XOR some shifted bits in the
     * cheapest possible way to reduce systematic lossage, as well as
     * to incorporate impact of the highest bits that would otherwise
     * never be used in index calculations because of table bounds.
     *
     * 计算key的哈希code并和hash码的高位做 (异或) 运算。
     * 因为这样相当于让哈希码的高位也参与运算了,(因为使用2的指数次方标记,
     * 大多数只在bit上有差异的哈希码会造成频繁的哈希碰撞)
     * 所以应该将哈希吗高位的影响也能影响到低位的运算
     * 因为通常很多哈希码是合理的均匀分布的(所以从高位到低位的运算中并不会更好)
     * 而且因为我们用了树结构来解决管理大量的碰撞。我们仅仅需要用更高效快速的方式
     * 异或运算一些转换的高位字节来减少一些系统性损失,并且 合并 由于哈希表边界而在索引计算中永远不会使用 的最高位的影响
     *
     * 意思就是正常因为哈希表的长度问题,可能正常的哈希码的高位不会参与运算,但是通过将哈希码的高位下移,
     * 可以让高位也参与运算,这样相当于哈希的更均匀了
     *
     */
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    /**
     * Returns x's Class if it is of the form "class C implements
     * Comparable<C>", else null.
     *
     * 如果某个类实现了接口Comparable 会返回这个类信息,否则返回null
     */
    static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    if (((t = ts[i]) instanceof ParameterizedType) &&
                        ((p = (ParameterizedType)t).getRawType() ==
                         Comparable.class) &&
                        (as = p.getActualTypeArguments()) != null &&
                        as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

    /**
     * Returns k.compareTo(x) if x matches kc (k's screened comparable
     * class), else 0.
     *
     * 如果x 的类和 kc 一样的,使用k的compareTo方法和x 比较,否则返回0
     */
    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable)k).compareTo(x));
    }

    /**
     * Returns a power of two size for the given target capacity.
     * 返回 一个2的指数对于给定的容量 ,意思是不管给的构造器容量是多少,哈希map都会最终变成2的指数次方管理容量
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    /* ---------------- Fields -------------- */

    /**
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     *
     * 这个表在第一次初始化的时候使用,并且可以在需要的时候重置大小。
     * 分配的时候,长度一定是2的次方
     * (我们也一些操作中,允许长度为0 ,以允许目前不需要的自举机制。)
     * 这个没太懂,啥是自举机制?
     */
    transient Node<K,V>[] table;

    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     *
     * 持有缓存的entryset,注意AbstractMap字段用于keySet()和values()。
     *
     */
    transient Set<Map.Entry<K,V>> entrySet;

    /**
     * The number of key-value mappings contained in this map.
     * 这个map中包含的键值对
     */
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     *
     * 这个map结构性修改的次数
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     *
     * 下一次重置大小的值
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
    int threshold;

    /**
     * The load factor for the hash table.
     * 负载因子
     * @serial
     */
    final float loadFactor;

    /* ---------------- Public operations -------------- */

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and load factor.
     *
     * 用指定的容量和负载因子构造一个空的哈希map
     *
     * @param  initialCapacity the initial capacity
     * @param  loadFactor      the load factor
     * @throws IllegalArgumentException if the initial capacity is negative
     *         or the load factor is nonpositive
     */
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and the default load factor (0.75).
     *
     *  用指定的容量大小和默认的负载因子创建空的hashmap
     *
     * @param  initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the default initial capacity
     * (16) and the default load factor (0.75).
     *
     * 创建map 容量16 负载因子 0.75
     *
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    /**
     * Constructs a new <tt>HashMap</tt> with the same mappings as the
     * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
     * default load factor (0.75) and an initial capacity sufficient to
     * hold the mappings in the specified <tt>Map</tt>.
     *
     * 创建一个新的map,和指定的map包含相同的元素 。
     * 新的map负载因子是0.75 初始化容量和入参map的元素数量有关
     *
     * @param   m the map whose mappings are to be placed in this map
     * @throws  NullPointerException if the specified map is null
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

    /**
     * Implements Map.putAll and Map constructor
     *
     * 实现putall 方法
     *
     * @param m the map
     * @param evict false when initially constructing this map, else
     * true (relayed to method afterNodeInsertion).
     */
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            else if (s > threshold)
                resize();
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

    /**
     * Returns the number of key-value mappings in this map.
     *
     * 返回map中的键值对
     *
     * @return the number of key-value mappings in this map
     */
    public int size() {
        return size;
    }

    /**
     * Returns <tt>true</tt> if this map contains no key-value mappings.
     *
     * @return <tt>true</tt> if this map contains no key-value mappings
     */
    public boolean isEmpty() {
        return size == 0;
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * 返回key对应的value ,如果key不存在,返回null
     *
     * <p>More formally, if this map contains a mapping
     * from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * 返回为null 不代表一定是这个map不包含这个key
     * 也可能是这个map明确这个key 是null
     * 方法containsKey 可以区分这两种情况
     *
     * @see #put(Object, Object)
     */
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * Implements Map.get and related methods
     * 实现Map的get方法
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    /**
     * Returns <tt>true</tt> if this map contains a mapping for the
     * specified key.
     * 如果map 包含指定key的键值对 返回true
     *
     * @param   key   The key whose presence in this map is to be tested
     * @return <tt>true</tt> if this map contains a mapping for the specified
     * key.
     */
    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }

    /**
     * Associates the specified value with the specified key in this map.
     * If the map previously contained a mapping for the key, the old
     * value is replaced.
     *
     * 替换指定key的指定value
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * Implements Map.put and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

    /**
     * Initializes or doubles table size.  If null, allocates in
     * accord with initial capacity target held in field threshold.
     * Otherwise, because we are using power-of-two expansion, the
     * elements from each bin must either stay at same index, or move
     * with a power of two offset in the new table.
     *
     * 初始化或者扩容一杯表的大小,
     *
     * 否则,因为我们使用2的指数次方扩容,每个桶中的元素一定是要么在原来的下标桶下面
     * 要么在新表中的一个2的指数资方下标下面
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

    /**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     *
     * 根绝给定的哈希码计算下标,替换对应下标的所有节点转换为树
     * 除非表太小,此时需要扩容
     *
     */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

    /**
     * Copies all of the mappings from the specified map to this map.
     * These mappings will replace any mappings that this map had for
     * any of the keys currently in the specified map.
     *
     * 复制指定的map里面的键值对到新的map里面
     * 如果两个map有重复的key的话,会覆盖
     *
     * @param m mappings to be stored in this map
     * @throws NullPointerException if the specified map is null
     */
    public void putAll(Map<? extends K, ? extends V> m) {
        putMapEntries(m, true);
    }

    /**
     * Removes the mapping for the specified key from this map if present.
     *
     * 如果存在的话,会删除指定的key
     *
     * @param  key key whose mapping is to be removed from the map
     * @return the previous value associated with <tt>key</tt>, or
     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
     *         (A <tt>null</tt> return can also indicate that the map
     *         previously associated <tt>null</tt> with <tt>key</tt>.)
     */
    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

    /**
     * Implements Map.remove and related methods
     *
     * 实现了map 的remove 方法和相关方法
     * @param hash hash for key
     * @param key the key
     * @param value the value to match if matchValue, else ignored
     * @param matchValue if true only remove if value is equal
     * @param movable if false do not move other nodes while removing
     * @return the node, or null if none
     */
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

    /**
     * Removes all of the mappings from this map.
     * The map will be empty after this call returns.
     *
     * 删除所有元素
     */
    public void clear() {
        Node<K,V>[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i)
                tab[i] = null;
        }
    }

    /**
     * Returns <tt>true</tt> if this map maps one or more keys to the
     * specified value.
     * 如果有一个或者多个键值对的值能对应,返回true
     *
     * @param value value whose presence in this map is to be tested
     * @return <tt>true</tt> if this map maps one or more keys to the
     *         specified value
     */
    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

    /**
     * Returns a {@link Set} view of the keys contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator's own <tt>remove</tt> operation), the results of
     * the iteration are undefined.  The set supports element removal,
     * which removes the corresponding mapping from the map, via the
     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
     * operations.
     *
     * 返回map中包含的key的Set集合
     * 这个set底层是map,为此map的修改会体现到set上面。反之亦然
     * 当有一个创建的迭代器在运行中的时候,如果map被修改了,迭代的结果是出乎意料的。
     * 通过Iterator.remove, Set.remove, removeAll, retainAll, and clear
     * 操作,这个set集合支持元素删除
     * 不支持 add 和 addall操作
     *
     *
     *
     *
     * @return a set view of the keys contained in this map
     */
    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new KeySet();
            keySet = ks;
        }
        return ks;
    }

    final class KeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<K> iterator()     { return new KeyIterator(); }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
        public final Spliterator<K> spliterator() {
            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super K> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.key);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * Returns a {@link Collection} view of the values contained in this map.
     * The collection is backed by the map, so changes to the map are
     * reflected in the collection, and vice-versa.  If the map is
     * modified while an iteration over the collection is in progress
     * (except through the iterator's own <tt>remove</tt> operation),
     * the results of the iteration are undefined.  The collection
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
     * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
     * support the <tt>add</tt> or <tt>addAll</tt> operations.
     *
     *
     * 返回map中包含的Value的Collection集合
     * 这个集合底层是map,为此map的修改会体现到集合上面。反之亦然
     * 当有一个创建的迭代器在运行中的时候,如果map被修改了,迭代的结果是出乎意料的。
     * 通过 Iterator.remove, Collection.remove, removeAll, retainAll and clear
     * 操作,这个集合支持元素删除
     * 不支持 add 和 addall操作
     *
     *
     * @return a view of the values contained in this map
     */
    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new Values();
            values = vs;
        }
        return vs;
    }

    final class Values extends AbstractCollection<V> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<V> iterator()     { return new ValueIterator(); }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator<V> spliterator() {
            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super V> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map.
     * The set is backed by the map, so changes to the map are
     * reflected in the set, and vice-versa.  If the map is modified
     * while an iteration over the set is in progress (except through
     * the iterator's own <tt>remove</tt> operation, or through the
     * <tt>setValue</tt> operation on a map entry returned by the
     * iterator) the results of the iteration are undefined.  The set
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove</tt>,
     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
     * <tt>clear</tt> operations.  It does not support the
     * <tt>add</tt> or <tt>addAll</tt> operations.
     *
     * 返回map中包含的键值对的Set集合
     * 这个集合底层是map,为此map的修改会体现到集合上面。反之亦然
     * 当有一个创建的迭代器在运行中的时候,如果map被修改了,迭代的结果是出乎意料的。
     * 通过Iterator.remove, Set.remove, removeAll, retainAll, and clear
     * 操作,这个集合支持元素删除
     * 不支持 add 和 addall操作
     *
     * @return a set view of the mappings contained in this map
     */
    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }

    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator();
        }
        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
            Object key = e.getKey();
            Node<K,V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator<Map.Entry<K,V>> spliterator() {
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    // Overrides of JDK8 Map extension methods
    //重写jdk8map 的扩展方法

    @Override
    public V getOrDefault(Object key, V defaultValue) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
    }

    @Override
    public V putIfAbsent(K key, V value) {
        return putVal(hash(key), key, value, true, true);
    }

    @Override
    public boolean remove(Object key, Object value) {
        return removeNode(hash(key), key, value, true, true) != null;
    }

    @Override
    public boolean replace(K key, V oldValue, V newValue) {
        Node<K,V> e; V v;
        if ((e = getNode(hash(key), key)) != null &&
            ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
            e.value = newValue;
            afterNodeAccess(e);
            return true;
        }
        return false;
    }

    @Override
    public V replace(K key, V value) {
        Node<K,V> e;
        if ((e = getNode(hash(key), key)) != null) {
            V oldValue = e.value;
            e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
        return null;
    }

    @Override
    public V computeIfAbsent(K key,
                             Function<? super K, ? extends V> mappingFunction) {
        if (mappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
            V oldValue;
            if (old != null && (oldValue = old.value) != null) {
                afterNodeAccess(old);
                return oldValue;
            }
        }
        V v = mappingFunction.apply(key);
        if (v == null) {
            return null;
        } else if (old != null) {
            old.value = v;
            afterNodeAccess(old);
            return v;
        }
        else if (t != null)
            t.putTreeVal(this, tab, hash, key, v);
        else {
            tab[i] = newNode(hash, key, v, first);
            if (binCount >= TREEIFY_THRESHOLD - 1)
                treeifyBin(tab, hash);
        }
        ++modCount;
        ++size;
        afterNodeInsertion(true);
        return v;
    }

    public V computeIfPresent(K key,
                              BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        Node<K,V> e; V oldValue;
        int hash = hash(key);
        if ((e = getNode(hash, key)) != null &&
            (oldValue = e.value) != null) {
            V v = remappingFunction.apply(key, oldValue);
            if (v != null) {
                e.value = v;
                afterNodeAccess(e);
                return v;
            }
            else
                removeNode(hash, key, null, false, true);
        }
        return null;
    }

    @Override
    public V compute(K key,
                     BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        V oldValue = (old == null) ? null : old.value;
        V v = remappingFunction.apply(key, oldValue);
        if (old != null) {
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            }
            else
                removeNode(hash, key, null, false, true);
        }
        else if (v != null) {
            if (t != null)
                t.putTreeVal(this, tab, hash, key, v);
            else {
                tab[i] = newNode(hash, key, v, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return v;
    }

    @Override
    public V merge(K key, V value,
                   BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
        if (value == null)
            throw new NullPointerException();
        if (remappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K,V>[] tab; Node<K,V> first; int n, i;
        int binCount = 0;
        TreeNode<K,V> t = null;
        Node<K,V> old = null;
        if (size > threshold || (tab = table) == null ||
            (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode)
                old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
            else {
                Node<K,V> e = first; K k;
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
        }
        if (old != null) {
            V v;
            if (old.value != null)
                v = remappingFunction.apply(old.value, value);
            else
                v = value;
            if (v != null) {
                old.value = v;
                afterNodeAccess(old);
            }
            else
                removeNode(hash, key, null, false, true);
            return v;
        }
        if (value != null) {
            if (t != null)
                t.putTreeVal(this, tab, hash, key, value);
            else {
                tab[i] = newNode(hash, key, value, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
        }
        return value;
    }

    @Override
    public void forEach(BiConsumer<? super K, ? super V> action) {
        Node<K,V>[] tab;
        if (action == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next)
                    action.accept(e.key, e.value);
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    @Override
    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        Node<K,V>[] tab;
        if (function == null)
            throw new NullPointerException();
        if (size > 0 && (tab = table) != null) {
            int mc = modCount;
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    e.value = function.apply(e.key, e.value);
                }
            }
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    /* ------------------------------------------------------------ */
    // Cloning and serialization
    //克隆并且序列化

    /**
     * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
     * values themselves are not cloned.
     * 返回一个对象的浅拷贝
     *
     * @return a shallow copy of this map
     */
    @SuppressWarnings("unchecked")
    @Override
    public Object clone() {
        HashMap<K,V> result;
        try {
            result = (HashMap<K,V>)super.clone();
        } catch (CloneNotSupportedException e) {
            // this shouldn't happen, since we are Cloneable
            throw new InternalError(e);
        }
        result.reinitialize();
        result.putMapEntries(this, false);
        return result;
    }

    // These methods are also used when serializing HashSets
    //这些方法在序列化hashset的时候也会被使用
    final float loadFactor() { return loadFactor; }
    final int capacity() {
        return (table != null) ? table.length :
            (threshold > 0) ? threshold :
            DEFAULT_INITIAL_CAPACITY;
    }

    /**
     * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
     * serialize it).
     *
     * 序列化
     *
     * @serialData The <i>capacity</i> of the HashMap (the length of the
     *             bucket array) is emitted (int), followed by the
     *             <i>size</i> (an int, the number of key-value
     *             mappings), followed by the key (Object) and value (Object)
     *             for each key-value mapping.  The key-value mappings are
     *             emitted in no particular order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws IOException {
        int buckets = capacity();
        // Write out the threshold, loadfactor, and any hidden stuff
        s.defaultWriteObject();
        s.writeInt(buckets);
        s.writeInt(size);
        internalWriteEntries(s);
    }

    /**
     * Reconstitute the {@code HashMap} instance from a stream (i.e.,
     * deserialize it).
     * 反序列化
     */
    private void readObject(java.io.ObjectInputStream s)
        throws IOException, ClassNotFoundException {
        // Read in the threshold (ignored), loadfactor, and any hidden stuff
        s.defaultReadObject();
        reinitialize();
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new InvalidObjectException("Illegal load factor: " +
                                             loadFactor);
        s.readInt();                // Read and ignore number of buckets
        int mappings = s.readInt(); // Read number of mappings (size)
        if (mappings < 0)
            throw new InvalidObjectException("Illegal mappings count: " +
                                             mappings);
        else if (mappings > 0) { // (if zero, use defaults)
            // Size the table using given load factor only if within
            // range of 0.25...4.0
            float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
            float fc = (float)mappings / lf + 1.0f;
            int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
                       DEFAULT_INITIAL_CAPACITY :
                       (fc >= MAXIMUM_CAPACITY) ?
                       MAXIMUM_CAPACITY :
                       tableSizeFor((int)fc));
            float ft = (float)cap * lf;
            threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
                         (int)ft : Integer.MAX_VALUE);

            // Check Map.Entry[].class since it's the nearest public type to
            // what we're actually creating.
            SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, cap);
            @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
            table = tab;

            // Read the keys and values, and put the mappings in the HashMap
            for (int i = 0; i < mappings; i++) {
                @SuppressWarnings("unchecked")
                    K key = (K) s.readObject();
                @SuppressWarnings("unchecked")
                    V value = (V) s.readObject();
                putVal(hash(key), key, value, false, false);
            }
        }
    }

    /* ------------------------------------------------------------ */
    // iterators
    //迭代器
    abstract class HashIterator {
        Node<K,V> next;        // next entry to return
        Node<K,V> current;     // current entry
        int expectedModCount;  // for fast-fail
        int index;             // current slot

        HashIterator() {
            expectedModCount = modCount;
            Node<K,V>[] t = table;
            current = next = null;
            index = 0;
            if (t != null && size > 0) { // advance to first entry
                do {} while (index < t.length && (next = t[index++]) == null);
            }
        }

        public final boolean hasNext() {
            return next != null;
        }

        final Node<K,V> nextNode() {
            Node<K,V>[] t;
            Node<K,V> e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            if ((next = (current = e).next) == null && (t = table) != null) {
                do {} while (index < t.length && (next = t[index++]) == null);
            }
            return e;
        }

        public final void remove() {
            Node<K,V> p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }

    final class KeyIterator extends HashIterator
        implements Iterator<K> {
        public final K next() { return nextNode().key; }
    }

    final class ValueIterator extends HashIterator
        implements Iterator<V> {
        public final V next() { return nextNode().value; }
    }

    final class EntryIterator extends HashIterator
        implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }

    /* ------------------------------------------------------------ */
    // spliterators
    //并行迭代器
    static class HashMapSpliterator<K,V> {
        final HashMap<K,V> map;
        Node<K,V> current;          // current node
        int index;                  // current index, modified on advance/split
        int fence;                  // one past last index
        int est;                    // size estimate
        int expectedModCount;       // for comodification checks

        HashMapSpliterator(HashMap<K,V> m, int origin,
                           int fence, int est,
                           int expectedModCount) {
            this.map = m;
            this.index = origin;
            this.fence = fence;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getFence() { // initialize fence and size on first use
            int hi;
            if ((hi = fence) < 0) {
                HashMap<K,V> m = map;
                est = m.size;
                expectedModCount = m.modCount;
                Node<K,V>[] tab = m.table;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            return hi;
        }

        public final long estimateSize() {
            getFence(); // force init
            return (long) est;
        }
    }

    static final class KeySpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<K> {
        KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                       int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public KeySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
                                        expectedModCount);
        }

        public void forEachRemaining(Consumer<? super K> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.key);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super K> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        K k = current.key;
                        current = current.next;
                        action.accept(k);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                Spliterator.DISTINCT;
        }
    }

    static final class ValueSpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<V> {
        ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public ValueSpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
                                          expectedModCount);
        }

        public void forEachRemaining(Consumer<? super V> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p.value);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super V> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        V v = current.value;
                        current = current.next;
                        action.accept(v);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
        }
    }

    static final class EntrySpliterator<K,V>
        extends HashMapSpliterator<K,V>
        implements Spliterator<Map.Entry<K,V>> {
        EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public EntrySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
            return (lo >= mid || current != null) ? null :
                new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
                                          expectedModCount);
        }

        public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
            int i, hi, mc;
            if (action == null)
                throw new NullPointerException();
            HashMap<K,V> m = map;
            Node<K,V>[] tab = m.table;
            if ((hi = fence) < 0) {
                mc = expectedModCount = m.modCount;
                hi = fence = (tab == null) ? 0 : tab.length;
            }
            else
                mc = expectedModCount;
            if (tab != null && tab.length >= hi &&
                (i = index) >= 0 && (i < (index = hi) || current != null)) {
                Node<K,V> p = current;
                current = null;
                do {
                    if (p == null)
                        p = tab[i++];
                    else {
                        action.accept(p);
                        p = p.next;
                    }
                } while (p != null || i < hi);
                if (m.modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }

        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
            int hi;
            if (action == null)
                throw new NullPointerException();
            Node<K,V>[] tab = map.table;
            if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                while (current != null || index < hi) {
                    if (current == null)
                        current = tab[index++];
                    else {
                        Node<K,V> e = current;
                        current = current.next;
                        action.accept(e);
                        if (map.modCount != expectedModCount)
                            throw new ConcurrentModificationException();
                        return true;
                    }
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                Spliterator.DISTINCT;
        }
    }

    /* ------------------------------------------------------------ */
    // LinkedHashMap support


    /*
     * The following package-protected methods are designed to be
     * overridden by LinkedHashMap, but not by any other subclass.
     * Nearly all other internal methods are also package-protected
     * but are declared final, so can be used by LinkedHashMap, view
     * classes, and HashSet.
     *
     * 下面的包保护级别的方法是设计用来linkedhashmap重写的,但是不是被其他子类
     *  几乎所有的其他内部方法也是包级别的,但是被声明为final  ,所以可以被linkedhashmap hashset
     *  使用
     */

    // Create a regular (non-tree) node
    //创建一个非树节点
    Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
        return new Node<>(hash, key, value, next);
    }

    // For conversion from TreeNodes to plain nodes
    //转换树节点到链表节点
    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
        return new Node<>(p.hash, p.key, p.value, next);
    }

    // Create a tree bin node
    //创建一个树节点
    TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
        return new TreeNode<>(hash, key, value, next);
    }

    // For treeifyBin
    //treeifyBin 方法调用
    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
        return new TreeNode<>(p.hash, p.key, p.value, next);
    }

    /**
     * Reset to initial default state.  Called by clone and readObject.
     * 重置来初始化到默认状态,被克隆和反序列化方法调用
     */
    void reinitialize() {
        table = null;
        entrySet = null;
        keySet = null;
        values = null;
        modCount = 0;
        threshold = 0;
        size = 0;
    }

    // Callbacks to allow LinkedHashMap post-actions
    //提供给子类的回调函数来传递行为,这也叫钩子函数
    void afterNodeAccess(Node<K,V> p) { }
    void afterNodeInsertion(boolean evict) { }
    void afterNodeRemoval(Node<K,V> p) { }

    // Called only from writeObject, to ensure compatible ordering.
    //序列化的时候才会被调用,来确保顺序
    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
        Node<K,V>[] tab;
        if (size > 0 && (tab = table) != null) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    s.writeObject(e.key);
                    s.writeObject(e.value);
                }
            }
        }
    }

    /* ------------------------------------------------------------ */
    // Tree bins

    /**
     * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
     * extends Node) so can be used as extension of either regular or
     * linked node.
     *
     * 树节点,继承了 LinkedHashMap.Entry(也就是继承了Node节点)
     * 所以可以用来扩展常规节点或者链表节点
     */
    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }

        /**
         * Returns root of tree containing this node.
         * 返回树节点的根节点
         */
        final TreeNode<K,V> root() {
            for (TreeNode<K,V> r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }

        /**
         * Ensures that the given root is the first node of its bin.
         * 确定给定的root节点是 第一个节点
         */
        static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
            int n;
            if (root != null && tab != null && (n = tab.length) > 0) {
                int index = (n - 1) & root.hash;
                TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
                if (root != first) {
                    Node<K,V> rn;
                    tab[index] = root;
                    TreeNode<K,V> rp = root.prev;
                    if ((rn = root.next) != null)
                        ((TreeNode<K,V>)rn).prev = rp;
                    if (rp != null)
                        rp.next = rn;
                    if (first != null)
                        first.prev = root;
                    root.next = first;
                    root.prev = null;
                }
                assert checkInvariants(root);
            }
        }

        /**
         * Finds the node starting at root p with the given hash and key.
         * The kc argument caches comparableClassFor(key) upon first use
         * comparing keys.
         *
         * 用知道的哈希码和key 找一个从根节点开始的节点
         * kc参数缓存了 comparableClassFor(key) 的结构,在第一次使用比较key的时候
         */
        final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
            TreeNode<K,V> p = this;
            do {
                int ph, dir; K pk;
                TreeNode<K,V> pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                          (kc = comparableClassFor(k)) != null) &&
                         (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

        /**
         * Calls find for root node.
         * 调用查找根节点。
         */
        final TreeNode<K,V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
        }

        /**
         * Tie-breaking utility for ordering insertions when equal
         * hashCodes and non-comparable. We don't require a total
         * order, just a consistent insertion rule to maintain
         * equivalence across rebalancings. Tie-breaking further than
         * necessary simplifies testing a bit.
         *
         * 当哈希码相等还没法排序的时候,有序插入节点程序
         * 我们不是要求一个完整的顺序,仅仅是一个始终如一的插入规则来
         * 在重新平衡之间保持一致。
         * Tie-breaking 可以在必要的时候稍微简化测试
         */
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null || b == null ||
                (d = a.getClass().getName().
                 compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                     -1 : 1);
            return d;
        }

        /**
         * Forms tree of the nodes linked from this node.
         * 将链表节点变为树
         * @return root of tree
         */
        final void treeify(Node<K,V>[] tab) {
            TreeNode<K,V> root = null;
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
                next = (TreeNode<K,V>)x.next;
                x.left = x.right = null;
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K,V> p = root;;) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                                  (kc = comparableClassFor(k)) == null) ||
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);

                        TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root);
        }

        /**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         *
         *  把这个节点指向的所有节点返回为一个非树节点的链表,去除树化
         */
        final Node<K,V> untreeify(HashMap<K,V> map) {
            Node<K,V> hd = null, tl = null;
            for (Node<K,V> q = this; q != null; q = q.next) {
                Node<K,V> p = map.replacementNode(q, null);
                if (tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }

        /**
         * Tree version of putVal.
         * 树版本的putval
         */
        final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                       int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K,V> root = (parent != null) ? root() : this;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K,V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                             (q = ch.find(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node<K,V> xpn = xp.next;
                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        ((TreeNode<K,V>)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

        /**
         * Removes the given node, that must be present before this call.
         * This is messier than typical red-black deletion code because we
         * cannot swap the contents of an interior node with a leaf
         * successor that is pinned by "next" pointers that are accessible
         * independently during traversal. So instead we swap the tree
         * linkages. If the current tree appears to have too few nodes,
         * the bin is converted back to a plain bin. (The test triggers
         * somewhere between 2 and 6 nodes, depending on tree structure).
         *
         * 移除给定的节点(这个节点在这次调用之前必须存在)
         * 这个比传统的红黑树删除节点麻烦,因为我们不能将内部节点的内容与叶后继节点交换,
         * 叶后继节点由遍历期间可独立访问的“下一个”指针固定
         * 所以,替代的是,如果一个当前树包含节点太少,我们把树退化为链表(测试有时候是2个到6个节点,取决于树的结构)
         *
         */
        final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
                                  boolean movable) {
            int n;
            if (tab == null || (n = tab.length) == 0)
                return;
            int index = (n - 1) & hash;
            TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
            TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
            if (pred == null)
                tab[index] = first = succ;
            else
                pred.next = succ;
            if (succ != null)
                succ.prev = pred;
            if (first == null)
                return;
            if (root.parent != null)
                root = root.root();
            if (root == null || root.right == null ||
                (rl = root.left) == null || rl.left == null) {
                tab[index] = first.untreeify(map);  // too small
                return;
            }
            TreeNode<K,V> p = this, pl = left, pr = right, replacement;
            if (pl != null && pr != null) {
                TreeNode<K,V> s = pr, sl;
                while ((sl = s.left) != null) // find successor
                    s = sl;
                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
                TreeNode<K,V> sr = s.right;
                TreeNode<K,V> pp = p.parent;
                if (s == pr) { // p was s's direct parent
                    p.parent = s;
                    s.right = p;
                }
                else {
                    TreeNode<K,V> sp = s.parent;
                    if ((p.parent = sp) != null) {
                        if (s == sp.left)
                            sp.left = p;
                        else
                            sp.right = p;
                    }
                    if ((s.right = pr) != null)
                        pr.parent = s;
                }
                p.left = null;
                if ((p.right = sr) != null)
                    sr.parent = p;
                if ((s.left = pl) != null)
                    pl.parent = s;
                if ((s.parent = pp) == null)
                    root = s;
                else if (p == pp.left)
                    pp.left = s;
                else
                    pp.right = s;
                if (sr != null)
                    replacement = sr;
                else
                    replacement = p;
            }
            else if (pl != null)
                replacement = pl;
            else if (pr != null)
                replacement = pr;
            else
                replacement = p;
            if (replacement != p) {
                TreeNode<K,V> pp = replacement.parent = p.parent;
                if (pp == null)
                    root = replacement;
                else if (p == pp.left)
                    pp.left = replacement;
                else
                    pp.right = replacement;
                p.left = p.right = p.parent = null;
            }

            TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);

            if (replacement == p) {  // detach
                TreeNode<K,V> pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left)
                        pp.left = null;
                    else if (p == pp.right)
                        pp.right = null;
                }
            }
            if (movable)
                moveRootToFront(tab, r);
        }

        /**
         * Splits nodes in a tree bin into lower and upper tree bins,
         * or untreeifies if now too small. Called only from resize;
         * see above discussion about split bits and indices.
         *
         * 拆分一个树的节点到低位和高位两个树节点,如果节点太少的话,可以先不树化。
         * 只有resize 方法会调用
         *
         * @param map the map
         * @param tab the table for recording bin heads
         * @param index the index of the table being split
         * @param bit the bit of hash to split on
         */
        final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

        /* ------------------------------------------------------------ */
        // Red-black tree methods, all adapted from CLR
        //左旋
        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                              TreeNode<K,V> p) {
            TreeNode<K,V> r, pp, rl;
            if (p != null && (r = p.right) != null) {
                if ((rl = p.right = r.left) != null)
                    rl.parent = p;
                if ((pp = r.parent = p.parent) == null)
                    (root = r).red = false;
                else if (pp.left == p)
                    pp.left = r;
                else
                    pp.right = r;
                r.left = p;
                p.parent = r;
            }
            return root;
        }

        //右旋
        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                               TreeNode<K,V> p) {
            TreeNode<K,V> l, pp, lr;
            if (p != null && (l = p.left) != null) {
                if ((lr = p.left = l.right) != null)
                    lr.parent = p;
                if ((pp = l.parent = p.parent) == null)
                    (root = l).red = false;
                else if (pp.right == p)
                    pp.right = l;
                else
                    pp.left = l;
                l.right = p;
                p.parent = l;
            }
            return root;
        }

        //平衡插入
        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                                    TreeNode<K,V> x) {
            x.red = true;
            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
                if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (!xp.red || (xpp = xp.parent) == null)
                    return root;
                if (xp == (xppl = xpp.left)) {
                    if ((xppr = xpp.right) != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.right) {
                            root = rotateLeft(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                }
                else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    }
                    else {
                        if (x == xp.left) {
                            root = rotateRight(root, x = xp);
                            xpp = (xp = x.parent) == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

        //平衡,删除
        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
                                                   TreeNode<K,V> x) {
            for (TreeNode<K,V> xp, xpl, xpr;;)  {
                if (x == null || x == root)
                    return root;
                else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                }
                else if (x.red) {
                    x.red = false;
                    return root;
                }
                else if ((xpl = xp.left) == x) {
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null)
                        x = xp;
                    else {
                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
                        if ((sr == null || !sr.red) &&
                            (sl == null || !sl.red)) {
                            xpr.red = true;
                            x = xp;
                        }
                        else {
                            if (sr == null || !sr.red) {
                                if (sl != null)
                                    sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ?
                                    null : xp.right;
                            }
                            if (xpr != null) {
                                xpr.red = (xp == null) ? false : xp.red;
                                if ((sr = xpr.right) != null)
                                    sr.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                }
                else { // symmetric
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }
                    if (xpl == null)
                        x = xp;
                    else {
                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) &&
                            (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        }
                        else {
                            if (sl == null || !sl.red) {
                                if (sr != null)
                                    sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ?
                                    null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = (xp == null) ? false : xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }

        /**
         * Recursive invariant check
         *
         * 递归的恒等校验
         */
        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
                tb = t.prev, tn = (TreeNode<K,V>)t.next;
            if (tb != null && tb.next != t)
                return false;
            if (tn != null && tn.prev != t)
                return false;
            if (tp != null && t != tp.left && t != tp.right)
                return false;
            if (tl != null && (tl.parent != t || tl.hash > t.hash))
                return false;
            if (tr != null && (tr.parent != t || tr.hash < t.hash))
                return false;
            if (t.red && tl != null && tl.red && tr != null && tr.red)
                return false;
            if (tl != null && !checkInvariants(tl))
                return false;
            if (tr != null && !checkInvariants(tr))
                return false;
            return true;
        }
    }

}

7.2 存储说明

JDK1.7中HashMap使用一个table数组来存储数据,用key的hashcode取模来决定key会被放到数组里的位置,如果hashcode相同,或者hashcode取模后的结果相同,那么这些key会被定位到Entry数组的同一个格子里,这些key会形成一个链表,在极端情况下比如说所有key的hashcode都相同,将会导致这个链表会很长,那么put/get操作需要遍历整个链表,那么最差情况下时间复杂度变为O(n)

在这里插入图片描述

针对JDK1.7中的这个性能缺陷,JDK1.8中的table数组中可能存放的是链表结构,也可能存放的是红黑树结构,如果链表中节点数量不超过8个则使用链表存储,超过8个会调用treeifyBin函数,将链表转换为红黑树 。那么即使所有key的hashcode完全相同,由于红黑树的特点,查找某个特定元素,也只需要O(logn)的开销。

7.3 关注点

  1. hashmap 初始化容量是2的4次方,最大容量是2的30次方
  2. 默认负载因子是0.75 ,可以在创建的时候指定,但是不建议
  3. 在链表节点大于8时,会转为红黑树,在节点小于6时会转化为链表
  4. hashmap 不是线程安全的,里面维护了modcount ,多线程修改时,会报错
  5. 通过方法名也可以看出来KeySet 和 EntrySet 返回的是set集合 ,Values返回的是Collection集合
  6. 并行迭代器HashMapSpliterator是java8的新特性,提高并行处理效率
  7. hashmap实现了红黑树相关操作,比如左旋,右旋,平衡插入等

以上,本人菜鸟一枚,如有错误,请不吝指正

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。