您现在的位置是:首页 >技术杂谈 >RT-Thread memheap 开启多块 SRAM的方法网站首页技术杂谈

RT-Thread memheap 开启多块 SRAM的方法

张世争 2024-07-01 11:59:45
简介RT-Thread memheap 开启多块 SRAM的方法

验证环境

  • NUCLEO-L476RG 开发板,板载 STM32L476RGT6(96K SARM1 + 32K SRAM2)

  • Win10 64 位

  • Keil MDK 5.36

  • RT-Thread 5.0.1 版本(2023-05-28 master 主线)

功能描述

  • 最近在研究 RT-Thread 内存的管理,熟悉了一下 memheap 的功能实现,并且了解到, memheap 支持多块内存(物理地址不连续)的管理,当开启 memheap 后,rt_malloc 会遍历所有注册的 heap 内存块,并且进行 内存的申请与释放。

  • 当前 STM32L476RGT6 支持两块 SRAM,其中 SRAM1 96KB,还有一块 SRAM2 32KB,SRAM2 默认没有使用,如何开启 SRAM2 呢?

开启 memheap

  • STM32L476RGT6 SRAM 总共:128KB,其中 SRAM1 默认开启, SRAM2 默认没有开启

  • 首先 RT-Thread 开启 memheap

  • 通过 RT-Thread ENV 工具: menuconfig,配置使能 memheap

  • 当前测试的 BSP 为:stm32l476-st-nucleo

在这里插入图片描述
在这里插入图片描述

  • 这里注意,如果让 rt_malloc 自动在多个 Heap 内存池中申请,需要开启 RT_USING_MEMHEAP_AUTO_BINDING,也就是 勾选 [*] Use all of memheap objects as heap

  • 配置使能 memheap 后,编译下载,通过 msh 命令 free 查看

msh >free
memheap   pool size  max used size available size
-------- ---------- ------------- --------------
heap     98304      7232          91072
  • 发现 SRAM1 96KB 正常的初始化了

开启 SRAM2

  • SRAM2 需要手动初始化,首先可以在 board.h 中增加 SRAM2 的内存信息:起始地址、大小
#define HEAP_SRAM2_BEGIN                (0x10000000)
#define HEAP_SRAM2_SIZE                 (32 * 1024)
  • 需要修改 board.c ,增加 SRAM2 的 memheap 的初始化操作
int system_sram2_init(void)
{
    static struct rt_memheap memheap_sram2;
    /* Heap initialization */
#if defined(RT_USING_HEAP)
    rt_memheap_init(&memheap_sram2, "sram2", (void *)HEAP_SRAM2_BEGIN, (rt_size_t)HEAP_SRAM2_SIZE);
#endif
    return 0;
}
INIT_BOARD_EXPORT(system_sram2_init);
  • 这里使用 RT-Thread 自动初始化机制,初始化为 board 级别。

功能验证

  • RT-Thread ENV scons --target=mdk5,可以刷新 Keil MDK5 的工程

  • 使用 Keil MDK5 打开工程,编译,下载到开发板,连接开发板串口,可以查看 SRAM2 正常初始化成功

memheap   pool size  max used size available size
-------- ---------- ------------- --------------
sram2    32768      48            32720
heap     98304      7232          91072
  • 也就是 sram2 存在 memheap 的列表中了

内存申请

  • rt_malloc 底层由 memheap 实现后,并且使能 RT_USING_MEMHEAP_AUTO_BINDING,使用 rt_malloc 会自动在所有 heap 中 操作

  • 测试用例:内存申请与释放

#define MEMHEAP_BLOCK_NUM       64
static void *buf[MEMHEAP_BLOCK_NUM] = { 0 };

void memheap_alloc_test(void)
{
    for (int i = 0; i < MEMHEAP_BLOCK_NUM; i++)
    {
        buf[i] = rt_malloc(3 * 1024 - 24);
        if (!buf[i])
        {
            rt_kprintf("malloc failed, index = %d
", i);
            return;
        }
    }
}

MSH_CMD_EXPORT(memheap_alloc_test, memheap_alloc_test);

void memheap_free_test(void)
{
    for (int i = 0; i < MEMHEAP_BLOCK_NUM; i++)
    {
        if (buf[i])
        {
            rt_memheap_free(buf[i]);
        }
    }
}
MSH_CMD_EXPORT(memheap_free_test, memheap_free_test);
  • 测试结果

在这里插入图片描述

  • 发现 rt_malloc 自动在 新增加的 sram2 中申请了内存

  • free 申请的内存,发现内存可用大小恢复了

专用 heap 内存

  • 如果不使能 RT_USING_MEMHEAP_AUTO_BINDING, 新注册的 memheap sram2,不会被系统 rt_malloc 使用到,需要用户自己定义 内存申请与释放的函数进行 专用内存的管理

  • 大概的管理思路如下:

int system_sram2_init(void)
{
    return rt_memheap_init(&memheap_sram2, "sram2", (void *)HEAP_SRAM2_BEGIN, (rt_size_t)HEAP_SRAM2_SIZE);
}
INIT_BOARD_EXPORT(system_sram2_init);

void *user_alloc(rt_size_t size)
{
    return rt_memheap_alloc(&memheap_sram2, size);
}

void user_free(void *ptr)
{
    rt_memheap_free(ptr);
}

void user_alloc_test(void)
{
    for (int i = 0; i < MEMHEAP_BLOCK_NUM; i++)
    {
        user_ptr[i] = user_alloc(1024);
        if (!user_ptr[i])
        {
            rt_kprintf("malloc failed, index = %d
", i);
            return;
        }
    }
}
MSH_CMD_EXPORT(user_alloc_test, user_alloc_test);

void user_free_test(void)
{
    for (int i = 0; i < MEMHEAP_BLOCK_NUM; i++)
    {
        if (user_ptr[i])
        {
            user_free(user_ptr[i]);
        }
    }
}
MSH_CMD_EXPORT(user_free_test, user_free_test);
  • 这样 user_allocuser_free 只会操作指定的 memheap

在这里插入图片描述

  • 【备注】如果同时开启了 RT_USING_MEMHEAP_AUTO_BINDING,并且又自定义了某个 memheap的 内存申请与释放操作,rt_malloc 常规内存申请,依旧有可能 申请这个 特定的 memheap 的内存

小结

  • 经过测试发现,一直申请某个大小的 memheap 内存并且不释放,会出现 hardfault 死机问题,后面抽时间研究一下死机的原因。

  • 以下:每次申请 512 字节内存,62次左右的时候,死机了。
    在这里插入图片描述

  • 可以通过 RT-Thread memheap,把几块物理上地址不连续的内存管理起来,统一使用 rt_malloc 、rt_free 等 内存操作接口进行操作,也可以独立管理各个 memheap 内存块,不过需要用户自己实现相应的 内存申请与释放接口

风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。