您现在的位置是:首页 >学无止境 >代码随想录算法训练营第十五天 | 层序遍历 10,226.翻转二叉树,101.对称二叉树 2网站首页学无止境

代码随想录算法训练营第十五天 | 层序遍历 10,226.翻转二叉树,101.对称二叉树 2

陈成不姓丞 2024-06-24 12:01:02
简介代码随想录算法训练营第十五天 | 层序遍历 10,226.翻转二叉树,101.对称二叉树 2

代码随想录算法训练营第十五天 | 层序遍历 10,226.翻转二叉树,101.对称二叉树 2

1.1 层序遍历 10

1.1.1 102.二叉树的层序遍历

思路:

  1. 通过队列实现
class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        queue<TreeNode*> q;
        vector<vector<int>> res;
        if(!root) return res;
        q.push(root);
        while(!q.empty()){
            int size = q.size();
            vector<int> cur;
            for(int i = 1; i <= size; ++i){
                TreeNode* node = q.front();
                q.pop();
                cur.push_back(node->val);
                if(node->left) q.push(node->left);
                if(node->right) q.push(node->right);
            }
            res.push_back(cur);
        }
        return res;
    }
};

1.1.2 二叉树的层次遍历 II

思路:

  1. 结果翻转一下
class Solution {
public:
    vector<vector<int>> levelOrderBottom(TreeNode* root) {
        queue<TreeNode*> q;
        vector<vector<int>> res;
        if(!root) return res;
        q.push(root);
        while(!q.empty()){
            int size = q.size();
            vector<int> cur;
            for(int i = 1; i <= size; ++i){
                TreeNode* node = q.front();
                q.pop();
                cur.push_back(node->val);
                if(node->left) q.push(node->left);
                if(node->right) q.push(node->right);
            }
            res.push_back(cur);
        }
        reverse(res.begin(), res.end());
        return res;
    }
};

1.1.3 二叉树的右视图

思路:

  1. 只有是当前层的最后一个才加入
class Solution {
public:
    vector<int> rightSideView(TreeNode* root) {
        queue<TreeNode*> q;
        vector<int> res;
        if(!root) return res;
        q.push(root);
        while(!q.empty()){
            int size = q.size();
            for(int i = 1; i <= size; ++i){
                TreeNode* node = q.front();
                q.pop();
                if(i == size) res.push_back(node->val);
                if(node->left) q.push(node->left);
                if(node->right) q.push(node->right);
            }
        }
        return res;
    }
};

1.1.4 二叉树的层平均值

思路:

  1. sum记录每层和即可
class Solution {
public:
    vector<double> averageOfLevels(TreeNode* root) {
        queue<TreeNode*> q;
        vector<double> res;
        if(!root) return res;
        q.push(root);
        while(!q.empty()){
            int size = q.size();
            double sum = 0;
            for(int i = 1; i <= size; ++i){
                TreeNode* node = q.front();
                q.pop();
                sum += node->val;
                if(node->left) q.push(node->left);
                if(node->right) q.push(node->right);
            }
            res.push_back(sum / size);
        }
        return res;
    }
};

1.1.5 N叉树的层序遍历

思路:

  1. 添加的节点数从2个变为复数个
class Solution {
public:
    vector<vector<int>> levelOrder(Node* root) {
        queue<Node*> q;
        vector<vector<int>> res;
        if(!root) return res;
        q.push(root);
        while(!q.empty()){
            int size = q.size();
            vector<int> cur;
            for(int i = 1; i <= size; ++i){
                Node* node = q.front();
                q.pop();
                cur.push_back(node->val);
                for(int j = 0; j < node->children.size(); ++j){
                    if(node->children[j]) q.push(node->children[j]);
                }        
            }
            res.push_back(cur);
        }
        return res;
    }
};

1.1.6 515.在每个树行中找最大值

思路:

  1. 每层比较即可
class Solution {
public:
    vector<int> largestValues(TreeNode* root) {
        queue<TreeNode*> q;
        vector<int> res;
        if(!root) return res;
        q.push(root);
        while(!q.empty()){
            int size = q.size();
            int max = INT_MIN;
            for(int i = 1; i <= size; ++i){
                TreeNode* node = q.front();
                q.pop();
                max = max < node->val ? node->val : max;
                if(node->left) q.push(node->left);
                if(node->right) q.push(node->right);
            }
            res.push_back(max);
        }
        return res;
    }
};

1.1.7 116.填充每个节点的下一个右侧节点指针

思路:

  1. 理清关系即可
class Solution {
public:
    Node* connect(Node* root) {
        queue<Node*> q;
        if(!root) return root;
        q.push(root);
        while(!q.empty()){
            int size = q.size();
            for(int i = 1; i <= size; ++i){
                Node* node = q.front();
                q.pop();
                if(i != size) node->next = q.front();
                else node->next = nullptr;
                if(node->left) q.push(node->left);
                if(node->right) q.push(node->right);
            }
        }
        return root;  
    }
};

1.1.8 117.填充每个节点的下一个右侧节点指针II

思路:

  1. 同上,没有区别
class Solution {
public:
    Node* connect(Node* root) {
        queue<Node*> q;
        if(!root) return root;
        q.push(root);
        while(!q.empty()){
            int size = q.size();
            for(int i = 1; i <= size; ++i){
                Node* node = q.front();
                q.pop();
                if(i != size) node->next = q.front();
                else node->next = nullptr;
                if(node->left) q.push(node->left);
                if(node->right) q.push(node->right);
            }
        }
        return root;  
    }
};

1.1.9 104.二叉树的最大深度

思路:

  1. 使用迭代法的话,可以使用层序遍历的方式
class Solution {
public:
    int maxDepth(TreeNode* root) {
        if (root == NULL) return 0;
        int depth = 0;
        queue<TreeNode*> que;
        que.push(root);
        while(!que.empty()) {
            int size = que.size();
            depth++; // 记录深度
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return depth;
    }
};

思路:

  1. 也可以使用递归的方式
class Solution {
public:
    int maxDepth(TreeNode* root) {
        if(root == nullptr) return 0;
        return max(maxDepth(root->right), maxDepth(root->left)) +1;
    }
};

1.1.10 111.二叉树的最小深度

思路:

  1. 当左右孩子都为空时,就可以结束了
class Solution {
public:
    int minDepth(TreeNode* root) {
        if (root == nullptr) return 0;
        int depth = 0;
        queue<TreeNode*> que;
        que.push(root);
        while(!que.empty()) {
            int size = que.size();
            depth++;
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
                if (!node->left && !node->right) return depth;
            }
        }
        return depth;
    }
};

1.2 226.翻转二叉树

思路:

  1. 递归(前序遍历)
  2. 迭代-深度优先(前序遍历+栈)
  3. 迭代-广度优先(层序遍历+队列)
class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        if(root == nullptr) return root;
        swap(root->left, root->right);
        invertTree(root->left);
        invertTree(root->right);
        return root;
    }
};
class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        if (root == NULL) return root;
        stack<TreeNode*> st;
        st.push(root);
        while(!st.empty()) {
            TreeNode* node = st.top();              // 中
            st.pop();
            swap(node->left, node->right);
            if(node->right) st.push(node->right);   // 右
            if(node->left) st.push(node->left);     // 左
        }
        return root;
    }
};
class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                swap(node->left, node->right); // 节点处理
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return root;
    }
};

1.3 101. 对称二叉树

思路:

  1. 比较的不是左右节点,而是左右子树

递归方式(1)

class Solution {
public:
    bool compare(TreeNode* left, TreeNode* right) {
        // 首先排除空节点的情况
        if (left == NULL && right != NULL) return false;
        else if (left != NULL && right == NULL) return false;
        else if (left == NULL && right == NULL) return true;
        // 排除了空节点,再排除数值不相同的情况
        else if (left->val != right->val) return false;

        // 此时就是:左右节点都不为空,且数值相同的情况
        // 此时才做递归,做下一层的判断
        bool outside = compare(left->left, right->right);   // 左子树:左、 右子树:右
        bool inside = compare(left->right, right->left);    // 左子树:右、 右子树:左
        bool isSame = outside && inside;                    // 左子树:中、 右子树:中 (逻辑处理)
        return isSame;

    }
    bool isSymmetric(TreeNode* root) {
        if (root == NULL) return true;
        return compare(root->left, root->right);
    }
};

递归方式(2)

class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        return dfs(root, root);
    }
private:
    bool dfs(TreeNode* tree1, TreeNode* tree2){
        if(tree1 == nullptr && tree2 == nullptr) return true;
        if(tree1 == nullptr || tree2 == nullptr) return false;
        if(tree1->val == tree2->val){
            return dfs(tree1->left, tree2->right) && dfs(tree1->right, tree2->left);
        }
        else{
            return false;
        }
    }
};

迭代+队列(栈也可以)

class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        if (root == NULL) return true;
        queue<TreeNode*> que;
        que.push(root->left);   // 将左子树头结点加入队列
        que.push(root->right);  // 将右子树头结点加入队列
        
        while (!que.empty()) {  // 接下来就要判断这两个树是否相互翻转
            TreeNode* leftNode = que.front(); que.pop();
            TreeNode* rightNode = que.front(); que.pop();
            if (!leftNode && !rightNode) {  // 左节点为空、右节点为空,此时说明是对称的
                continue;
            }

            // 左右一个节点不为空,或者都不为空但数值不相同,返回false
            if ((!leftNode || !rightNode || (leftNode->val != rightNode->val))) {
                return false;
            }
            que.push(leftNode->left);   // 加入左节点左孩子
            que.push(rightNode->right); // 加入右节点右孩子
            que.push(leftNode->right);  // 加入左节点右孩子
            que.push(rightNode->left);  // 加入右节点左孩子
        }
        return true;
    }
};
风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。