您现在的位置是:首页 >学无止境 >贪心算法-代码随想录-刷题笔记网站首页学无止境

贪心算法-代码随想录-刷题笔记

Wind哥 2024-06-23 12:01:02
简介贪心算法-代码随想录-刷题笔记

image.png

基础理论

什么是贪心

贪心的本质是选择每一阶段的局部最优,从而达到全局最优
例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?
每次拿最大的,最终结果就是拿走最大数额的钱。
每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。

贪心一般解题步骤

贪心算法一般分为如下四步:

  • 将问题分解为若干个子问题
  • 找出适合的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解

刷题的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心

455.分发饼干

整体代码:大饼干先喂饱大胃口

局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩
可以尝试使用贪心策略,先将饼干数组和小孩数组排序。
然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。

//版本一 
// 时间复杂度:O(nlogn)
// 空间复杂度:O(1)
class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int index = s.size() - 1; // 饼干数组的下标
        int result = 0;
        for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口 
            if (index >= 0 && s[index] >= g[i]) { // 遍历饼干 
                result++;
                index--;
            }
        }
        return result;
    }
};

从代码中可以看出我用了一个index来控制饼干数组的遍历,遍历饼干并没有再起一个for循环,而是采用自减的方式,如果看到要遍历两个数组,就想到用两个for循环,那样逻辑其实就复杂了。

小饼干先喂饱小胃口

// 时间复杂度:O(nlogn)
// 空间复杂度:O(1)
class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(),g.end());
        sort(s.begin(),s.end());
        int index = 0;
        for(int i = 0; i < s.size(); i++) { // 饼干
            if(index < g.size() && g[index] <= s[i]){ // 胃口
                index++;
            }
        }
        return index;
    }
};
class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(),g.end());
        sort(s.begin(),s.end());
        int i=0,j=0;
        while(i<g.size()&&j<s.size()){
            if(s[j]>=g[i]){
                j++;
                i++;
            }
            else{
                j++;
            }
        }               
        return i;
    }
};

376. 摆动序列

image.png
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点 ),这个坡度就可以有两个局部峰值
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列
实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)
这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点
在计算是否有峰值的时候,大家知道遍历的下标i ,计算prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 此时就有波动就需要统计。
但本题要考虑三种情况:

  1. 情况一:上下坡中有平坡
  2. 情况二:数组首尾两端
  3. 情况三:单调坡中有平坡

情况一:上下坡中有平坡

image.png在图中,当i指向第一个2的时候,prediff > 0 && curdiff = 0 ,当 i 指向最后一个2的时候 prediff = 0 && curdiff < 0。
如果我们采用,删左面三个2的规则,那么 当 prediff = 0 && curdiff < 0 也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值。
所以我们记录峰值的条件应该是: (preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0),为什么这里允许 prediff == 0 ,就是为了 上面我说的这种情况。

情况二:数组首尾两端

image.png
针对以上情形,result初始为1(默认最右面有一个峰值),此时curDiff > 0 && preDiff <= 0,那么result++(计算了左面的峰值),最后得到的result就是2(峰值个数为2即摆动序列长度为2)

情况三:单调坡度有平坡

image.png
只需要在这个坡度摆动变化的时候,更新prediff就行,这样prediff在单调区间有平坡的时候就不会发生变化,造成我们的误判。

整体代码

// 版本二 
//时间复杂度:O(n)
//空间复杂度:O(1)
class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        int curDiff = 0; // 当前一对差值
        int preDiff = 0; // 前一对差值
        int result = 1;  // 记录峰值个数,序列默认序列最右边有一个峰值
        for (int i = 0; i < nums.size() - 1; i++) {
            curDiff = nums[i + 1] - nums[i];
            // 出现峰值
            if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
                result++;
                preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff 
            }
        }
        return result;
    }
};

动态规划代码

对于我们当前考虑的这个数,要么是作为山峰(即nums[i] > nums[i-1]),要么是作为山谷(即nums[i] < nums[i - 1])

  • 设dp状态dp[i][0],表示考虑前i个数,第i个数作为山峰的摆动子序列的最长长度
  • 设dp状态dp[i][1],表示考虑前i个数,第i个数作为山谷的摆动子序列的最长长度

则转移方程为:

  • dp[i][0] = max(dp[i][0], dp[j][1] + 1),其中0 < j < i且nums[j] < nums[i],表示将nums[i]接到前面某个山谷后面,作为山峰。
  • dp[i][1] = max(dp[i][1], dp[j][0] + 1),其中0 < j < i且nums[j] > nums[i],表示将nums[i]接到前面某个山峰后面,作为山谷。

初始状态:
由于一个数可以接到前面的某个数后面,也可以以自身为子序列的起点,所以初始状态为:dp[0][0] = dp[0][1] = 1。

//时间复杂度:O(n^2)
//空间复杂度:O(n)
class Solution {
public:
    int dp[1005][2];
    int wiggleMaxLength(vector<int>& nums) {
        memset(dp, 0, sizeof dp);
        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < nums.size(); ++i) {
            dp[i][0] = dp[i][1] = 1;
            for (int j = 0; j < i; ++j) {
                if (nums[j] > nums[i]) dp[i][1] = max(dp[i][1], dp[j][0] + 1);
            }
            for (int j = 0; j < i; ++j) {
                if (nums[j] < nums[i]) dp[i][0] = max(dp[i][0], dp[j][1] + 1);
            }
        }
        return max(dp[nums.size() - 1][0], dp[nums.size() - 1][1]);
    }
};

53. 最大子序和

暴力

时间复杂度:O(n^2)
空间复杂度:O(1)
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) { // 设置起始位置
            count = 0;
            for (int j = i; j < nums.size(); j++) { // 每次从起始位置i开始遍历寻找最大值
                count += nums[j];
                result = count > result ? count : result;
            }
        }
        return result;
    }
};

贪心

贪心贪的是哪里呢?
如果 -2,1在一起,计算起点的时候,一定是从1开始计算,因为负数只会拉低总和,这就是贪心贪的地方!
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
全局最优:选取最大“连续和”
局部最优的情况下,并记录最大的“连续和”,可以推出全局最优
从代码角度上来讲:遍历nums,从头开始用count累积,如果count一旦加上nums[i]变为负数,那么就应该从nums[i+1]开始从0累积count了,因为已经变为负数的count,只会拖累总和。
这相当于是暴力解法中的不断调整最大子序和区间的起始位置
不能让“连续和”为负数的时候加上下一个元素,而不是 不让“连续和”加上一个负数

时间复杂度:O(n)
空间复杂度:O(1)
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) {
            count += nums[i];
            if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
                result = count;
            }
            if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
        }
        return result;
    }
};

法二:每次都是当前累计与当前元素比较,比如-2,1和1比较,之前sum=-1,然后更新sum=nums[i]=1

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int sum=0;
        int ans=INT_MIN; 
        for(int i=0;i<nums.size();i++){
            sum+=nums[i];
            if(sum<nums[i]){
               sum=nums[i];
            }
            ans=max(ans,sum);
        }
        return ans;
    }
};

动态规划

时间复杂度:O(n)
空间复杂度:O(n)
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        vector<int> dp(nums.size(), 0); // dp[i]表示包括i之前的最大连续子序列和
        dp[0] = nums[0];
        int result = dp[0];
        for (int i = 1; i < nums.size(); i++) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式
            if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值
        }
        return result;
    }
};

122.买卖股票的最佳时机II

image.png
假如第0天买入,第3天卖出,那么利润为:prices[3] - prices[0]。
相当于(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])。
把利润分解为每天为单位的维度,而不是从0天到第3天整体去考虑!
局部最优:收集每天的正利润,全局最优:求得最大利润

贪心

//时间复杂度:O(n)
//空间复杂度:O(1)
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int result = 0;
        for (int i = 1; i < prices.size(); i++) {
            result += max(prices[i] - prices[i - 1], 0);
        }
        return result;
    }
};

动态规划

//时间复杂度:O(n)
//空间复杂度:O(n)

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        // dp[i][1]第i天持有的最多现金
        // dp[i][0]第i天持有股票后的最多现金
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(2, 0));
        dp[0][0] -= prices[0]; // 持股票
        for (int i = 1; i < n; i++) {
            // 第i天持股票所剩最多现金 = max(第i-1天持股票所剩现金, 第i-1天持现金-买第i天的股票)
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            // 第i天持有最多现金 = max(第i-1天持有的最多现金,第i-1天持有股票的最多现金+第i天卖出股票)
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        }
        return max(dp[n - 1][0], dp[n - 1][1]);
    }
};

55. 跳跃游戏

贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点
image.png
i每次移动只能在cover的范围内移动,每移动一个元素,cover得到该元素数值(新的覆盖范围)的补充,让i继续移动下去。
而cover每次只取 max(该元素数值补充后的范围, cover本身范围)。
如果cover大于等于了终点下标,直接return true就可以了。

class Solution {
public:
    bool canJump(vector<int>& nums) {
        int cover = 0;
        if (nums.size() == 1) return true; // 只有一个元素,就是能达到
        for (int i = 0; i <= cover; i++) { // 注意这里是小于等于cover
            cover = max(i + nums[i], cover);
            if (cover >= nums.size() - 1) return true; // 说明可以覆盖到终点了
        }
        return false;
    }
};

45.跳跃游戏II
贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最小步数。
但在写代码的时候还不能真的能跳多远就跳多远,那样就不知道下一步最远能跳到哪里了。
要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最小步数!
这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖
image.png这里还是有特殊情况需要考虑,当移动下标达到了当前覆盖的最远距离下标时

  • 如果当前覆盖最远距离下标不是是集合终点,步数就加一,还需要继续走。
  • 如果当前覆盖最远距离下标就是是集合终点,步数不用加一,因为不能再往后走了。
// 版本一
class Solution {
public:
    int jump(vector<int>& nums) {
        if (nums.size() == 1) return 0;
        int curDistance = 0;    // 当前覆盖最远距离下标
        int ans = 0;            // 记录走的最大步数
        int nextDistance = 0;   // 下一步覆盖最远距离下标
        for (int i = 0; i < nums.size(); i++) {
            nextDistance = max(nums[i] + i, nextDistance);  // 更新下一步覆盖最远距离下标
            if (i == curDistance) {                         // 遇到当前覆盖最远距离下标
                if (curDistance < nums.size() - 1) {       // 如果当前覆盖最远距离下标不是终点
                    ans++;                                  // 需要走下一步
                    curDistance = nextDistance;             // 更新当前覆盖最远距离下标(相当于加油了)
                    if (nextDistance >= nums.size() - 1) break; // 下一步的覆盖范围已经可以达到终点,结束循环
                } else break;                               // 当前覆盖最远距到达集合终点,不用做ans++操作了,直接结束
            }
        }
        return ans;
    }
};

法二

针对于方法一的特殊情况,可以统一处理,即:移动下标只要遇到当前覆盖最远距离的下标,直接步数加一,不考虑是不是终点的情况。
想要达到这样的效果,只要让移动下标,最大只能移动到nums.size - 2的地方就可以了。
因为当移动下标指向nums.size - 2时:

  • 如果移动下标等于当前覆盖最大距离下标, 需要再走一步(即ans++),因为最后一步一定是可以到的终点。(题目假设总是可以到达数组的最后一个位置)
  • image.png
  • image.png

其精髓在于控制移动下标i只移动到nums.size() - 2的位置,所以移动下标只要遇到当前覆盖最远距离的下标,直接步数加一,不用考虑别的了。

// 版本二
class Solution {
public:
    int jump(vector<int>& nums) {
        int curDistance = 0;    // 当前覆盖的最远距离下标
        int ans = 0;            // 记录走的最大步数
        int nextDistance = 0;   // 下一步覆盖的最远距离下标
        for (int i = 0; i < nums.size() - 1; i++) { // 注意这里是小于nums.size() - 1,这是关键所在
            nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖的最远距离下标
            if (i == curDistance) {                 // 遇到当前覆盖的最远距离下标
                curDistance = nextDistance;         // 更新当前覆盖的最远距离下标
                ans++;
            }
        }
        return ans;
    }
};

1005.K次取反后最大化的数组和

贪心的思路,局部最优:让绝对值大的负数变为正数,当前数值达到最大,整体最优:整个数组和达到最大。
局部最优可以推出全局最优。
那么如果将负数都转变为正数了,K依然大于0,此时的问题是一个有序正整数序列,如何转变K次正负,让 数组和 达到最大。
那么又是一个贪心:局部最优:只找数值最小的正整数进行反转,当前数值和可以达到最大(例如正整数数组{5, 3, 1},反转1 得到-1 比 反转5得到的-5 大多了),全局最优:整个 数组和 达到最大。
就用了两次贪心!
那么本题的解题步骤为:

  • 第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
  • 第二步:从前向后遍历,遇到负数将其变为正数,同时K–
  • 第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完
  • 第四步:求和
class Solution {
static bool cmp(int a, int b) {
    return abs(a) > abs(b);
}

public:
    int largestSumAfterKNegations(vector<int>& A, int K) {
        sort(A.begin(), A.end(), cmp);       // 第一步
        for (int i = 0; i < A.size(); i++) { // 第二步
            if (A[i] < 0 && K > 0) {
                A[i] *= -1;
                K--;
            }
        }
        if (K % 2 == 1) A[A.size() - 1] *= -1; // 第三步
        int result = 0;
        for (int a : A) result += a;        // 第四步
        return result;
    }
};

134. 加油站

暴力超时

for循环适合模拟从头到尾的遍历,而while循环适合模拟环形遍历,要善于使用while!

时间复杂度:O(n^2)
空间复杂度:O(1)
class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        for (int i = 0; i < cost.size(); i++) {
            int rest = gas[i] - cost[i]; // 记录剩余油量
            int index = (i + 1) % cost.size();
            while (rest > 0 && index != i) { // 模拟以i为起点行驶一圈(如果有rest==0,那么答案就不唯一了)
                rest += gas[index] - cost[index];
                index = (index + 1) % cost.size();
            }
            // 如果以i为起点跑一圈,剩余油量>=0,返回该起始位置
            if (rest >= 0 && index == i) return i;
        }
        return -1;
    }
};

贪心

那么局部最优:当前累加rest[i]的和curSum一旦小于0,起始位置至少要是i+1,因为从i之前开始一定不行。全局最优:找到可以跑一圈的起始位置

时间复杂度:O(n)
空间复杂度:O(1)
class Solution {
public:
    int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
        int curSum = 0;
        int totalSum = 0;
        int start = 0;
        for (int i = 0; i < gas.size(); i++) {
            curSum += gas[i] - cost[i];
            totalSum += gas[i] - cost[i];
            if (curSum < 0) {   // 当前累加rest[i]和 curSum一旦小于0
                start = i + 1;  // 起始位置更新为i+1
                curSum = 0;     // curSum从0开始
            }
        }
        if (totalSum < 0) return -1; // 说明怎么走都不可能跑一圈了
        return start;
    }
};

135. 分发糖果

这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼
先确定右边评分大于左边的情况(也就是从前向后遍历)
此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果
局部最优可以推出全局最优。
如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1

// 从前向后
for (int i = 1; i < ratings.size(); i++) {
    if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
}

image.png
再确定左孩子大于右孩子的情况(从后向前遍历)
遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?
因为 rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以 要从后向前遍历。
如果从前向后遍历,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了
image.png

// 从后向前
for (int i = ratings.size() - 2; i >= 0; i--) {
    if (ratings[i] > ratings[i + 1] ) {
        candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
    }
}

整体代码

class Solution {
public:
    int candy(vector<int>& ratings) {
        vector<int> candyVec(ratings.size(), 1);
        // 从前向后
        for (int i = 1; i < ratings.size(); i++) {
            if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
        }
        // 从后向前
        for (int i = ratings.size() - 2; i >= 0; i--) {
            if (ratings[i] > ratings[i + 1] ) {
                candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
            }
        }
        // 统计结果
        int result = 0;
        for (int i = 0; i < candyVec.size(); i++) result += candyVec[i];
        return result;
    }
};

总结

那么本题我采用了两次贪心的策略:

  • 一次是从左到右遍历,只比较右边孩子评分比左边大的情况。
  • 一次是从右到左遍历,只比较左边孩子评分比右边大的情况。

这样从局部最优推出了全局最优,即:相邻的孩子中,评分高的孩子获得更多的糖果。

860.柠檬水找零

只需要维护三种金额的数量,5,10和20。
有如下三种情况:

  • 情况一:账单是5,直接收下。
  • 情况二:账单是10,消耗一个5,增加一个10
  • 情况三:账单是20,优先消耗一个10和一个5,如果不够,再消耗三个5

账单是20的情况,为什么要优先消耗一个10和一个5呢?
因为美元10只能给账单20找零,而美元5可以给账单10和账单20找零,美元5更万能!
所以局部最优:遇到账单20,优先消耗美元10,完成本次找零。全局最优:完成全部账单的找零。

class Solution {
public:
    bool lemonadeChange(vector<int>& bills) {
        int five = 0, ten = 0, twenty = 0;
        for (int bill : bills) {
            // 情况一
            if (bill == 5) five++;
            // 情况二
            if (bill == 10) {
                if (five <= 0) return false;
                ten++;
                five--;
            }
            // 情况三
            if (bill == 20) {
                // 优先消耗10美元,因为5美元的找零用处更大,能多留着就多留着
                if (five > 0 && ten > 0) {
                    five--;
                    ten--;
                    twenty++; // 其实这行代码可以删了,因为记录20已经没有意义了,不会用20来找零
                } else if (five >= 3) {
                    five -= 3;
                    twenty++; // 同理,这行代码也可以删了
                } else return false;
            }
        }
        return true;
    }
};

406.根据身高重建队列

遇到两个维度权衡的时候,一定要先确定一个维度,再确定另一个维度。
按照身高h来排序,身高一定是从大到小排(身高相同的话则k小的站前面),让高个子在前面
此时我们可以确定一个维度了,就是身高,前面的节点一定都比本节点高!
那么只需要按照k为下标重新插入队列就可以了
image.png
所以在按照身高从大到小排序后:
局部最优:优先按身高高的people的k来插入。插入操作过后的people满足队列属性
全局最优:最后都做完插入操作,整个队列满足题目队列属性
序完的people: [[7,0], [7,1], [6,1], [5,0], [5,2],[4,4]]
插入的过程:

  • 插入[7,0]:[[7,0]]
  • 插入[7,1]:[[7,0],[7,1]]
  • 插入[6,1]:[[7,0],[6,1],[7,1]]
  • 插入[5,0]:[[5,0],[7,0],[6,1],[7,1]]
  • 插入[5,2]:[[5,0],[7,0],[5,2],[6,1],[7,1]]
  • 插入[4,4]:[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]

整体代码

// 版本一
时间复杂度:O(nlog n + n^2)
空间复杂度:O(n)
class Solution {
public:
    static bool cmp(const vector<int>& a, const vector<int>& b) {
        if (a[0] == b[0]) return a[1] < b[1];
        return a[0] > b[0];
    }
    vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
        sort (people.begin(), people.end(), cmp);
        vector<vector<int>> que;
        for (int i = 0; i < people.size(); i++) {
            int position = people[i][1];
            que.insert(que.begin() + position, people[i]);
        }
        return que;
    }
};

但使用vector是非常费时的,C++中vector(可以理解是一个动态数组,底层是普通数组实现的)如果插入元素大于预先普通数组大小,vector底部会有一个扩容的操作,即申请两倍于原先普通数组的大小,然后把数据拷贝到另一个更大的数组上。
所以使用vector(动态数组)来insert,是费时的,插入再拷贝的话,单纯一个插入的操作就是O(n2)了,甚至可能拷贝好几次,就不止O(n2)了

整体代码:链表优化

// 版本二
时间复杂度:O(nlog n + n^2)
空间复杂度:O(n)
class Solution {
public:
    // 身高从大到小排(身高相同k小的站前面)
    static bool cmp(const vector<int>& a, const vector<int>& b) {
        if (a[0] == b[0]) return a[1] < b[1];
        return a[0] > b[0];
    }
    vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
        sort (people.begin(), people.end(), cmp);
        list<vector<int>> que; // list底层是链表实现,插入效率比vector高的多
        for (int i = 0; i < people.size(); i++) {
            int position = people[i][1]; // 插入到下标为position的位置
            std::list<vector<int>>::iterator it = que.begin();
            while (position--) { // 寻找在插入位置
                it++;
            }
            que.insert(it, people[i]);
        }
        return vector<vector<int>>(que.begin(), que.end());
    }
};

452. 用最少数量的箭引爆气球

局部最优:当气球出现重叠,一起射,所用弓箭最少。全局最优:把所有气球射爆所用弓箭最少。
按照气球起始位置排序
可以看出首先第一组重叠气球,一定是需要一个箭,气球3的左边界大于了 第一组重叠气球的最小右边界,所以再需要一支箭来射气球3了。
image.png

//时间复杂度:O(nlog n),因为有一个快排
//空间复杂度:O(1),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间
class Solution {
private:
    static bool cmp(const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0];
    }
public:
    int findMinArrowShots(vector<vector<int>>& points) {
        if (points.size() == 0) return 0;
        sort(points.begin(), points.end(), cmp);

        int result = 1; // points 不为空至少需要一支箭
        for (int i = 1; i < points.size(); i++) {
            if (points[i][0] > points[i - 1][1]) {  // 气球i和气球i-1不挨着,注意这里不是>=
                result++; // 需要一支箭
            }
            else {  // 气球i和气球i-1挨着
                points[i][1] = min(points[i - 1][1], points[i][1]); // 更新重叠气球最小右边界
            }
        }
        return result;
    }
};

435. 无重叠区间

左边界排序

只不过 左边界排序我们就是直接求 重叠的区间,count为记录重叠区间数。

class Solution {
public:
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0]; // 改为左边界排序
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);
        int count = 0; // 注意这里从0开始,因为是记录重叠区间
        int end = intervals[0][1]; // 记录区间分割点
        for (int i = 1; i < intervals.size(); i++) {   
            if (intervals[i][0] >= end)  end = intervals[i][1]; // 无重叠的情况
            else { // 重叠情况 
                end = min(end, intervals[i][1]);
                count++;
            }
        }
        return count;
    }
};

精简之后

class Solution {
public:
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0]; // 改为左边界排序
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);
        int count = 0; // 注意这里从0开始,因为是记录重叠区间
        for (int i = 1; i < intervals.size(); i++) {
            if (intervals[i][0] < intervals[i - 1][1]) { //重叠情况
                intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]);
                count++;
            }
        }
        return count;
    }
};

引爆气球修改

class Solution {
public:
    // 按照区间左边界排序
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0]; // 左边界排序
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);

        int result = 1; // points 不为空至少需要一支箭
        for (int i = 1; i < intervals.size(); i++) {
            if (intervals[i][0] >= intervals[i - 1][1]) {
                result++; // 需要一支箭
            }
            else {  // 气球i和气球i-1挨着
                intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]); // 更新重叠气球最小右边界
            }
        }
        return intervals.size() - result;
    }
};

右边界排序

image.png

class Solution {
public:
    // 按照区间右边界排序
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[1] < b[1];
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);
        int count = 1; // 记录非交叉区间的个数
        int end = intervals[0][1]; // 记录区间分割点
        for (int i = 1; i < intervals.size(); i++) {
            if (end <= intervals[i][0]) {
                end = intervals[i][1];
                count++;
            }
        }
        return intervals.size() - count;
    }
};

引爆气球修改

class Solution {
public:
    // 按照区间右边界排序
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[1] < b[1]; // 右边界排序 
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);

        int result = 1; // points 不为空至少需要一支箭
        for (int i = 1; i < intervals.size(); i++) {
            if (intervals[i][0] >= intervals[i - 1][1]) {
                result++; // 需要一支箭
            }
            else {  // 气球i和气球i-1挨着
                intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]); // 更新重叠气球最小右边界
            }
        }
        return intervals.size() - result;
    }
};

763.划分字母区间

  • 统计每一个字符最后出现的位置
  • 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点image.png
//时间复杂度:O(n)
//空间复杂度:O(1),使用的hash数组是固定大小
class Solution {
public:
    vector<int> partitionLabels(string S) {
        int hash[27] = {0}; // i为字符,hash[i]为字符出现的最后位置
        for (int i = 0; i < S.size(); i++) { // 统计每一个字符最后出现的位置
            hash[S[i] - 'a'] = i;
        }
        vector<int> result;
        int left = 0;
        int right = 0;
        for (int i = 0; i < S.size(); i++) {
            right = max(right, hash[S[i] - 'a']); // 找到字符出现的最远边界
            if (i == right) {
                result.push_back(right - left + 1);
                left = i + 1;
            }
        }
        return result;
    }
};

56. 合并区间

image.png
如何去模拟合并区间呢?
其实就是用合并区间后左边界和右边界,作为一个新的区间,加入到result数组里就可以了。如果没有合并就把原区间加入到result数组。

class Solution {
public:
    static bool cmp(const vector<int>&a,const vector<int>&b){
       return a[0]<b[0];
    }
    vector<vector<int>> merge(vector<vector<int>>& intervals) {
        vector<vector<int>>ans;
        sort(intervals.begin(),intervals.end(),cmp);
        if(intervals.size()==1) return intervals;
        ans.push_back(intervals[0]);
        for(int i=1;i<intervals.size();i++){
            if(intervals[i][0]<=ans.back()[1]){
               ans.back()[1]=max(ans.back()[1],intervals[i][1]);
            }
            else{
                ans.push_back(intervals[i]);
            }
        }
        return ans;
    }
};

用lambda

//时间复杂度: O(nlogn)
//空间复杂度: O(logn),排序需要的空间开销
class Solution {
public:
    vector<vector<int>> merge(vector<vector<int>>& intervals) {
        vector<vector<int>> result;
        if (intervals.size() == 0) return result; // 区间集合为空直接返回
        // 排序的参数使用了lambda表达式
        sort(intervals.begin(), intervals.end(), [](const vector<int>& a, const vector<int>& b){return a[0] < b[0];});

        // 第一个区间就可以放进结果集里,后面如果重叠,在result上直接合并
        result.push_back(intervals[0]); 

        for (int i = 1; i < intervals.size(); i++) {
            if (result.back()[1] >= intervals[i][0]) { // 发现重叠区间
                // 合并区间,只更新右边界就好,因为result.back()的左边界一定是最小值,因为我们按照左边界排序的
                result.back()[1] = max(result.back()[1], intervals[i][1]); 
            } else {
                result.push_back(intervals[i]); // 区间不重叠 
            }
        }
        return result;
    }
};

738.单调递增的数字

暴力解法

//时间复杂度:O(n × m) m为n的数字长度
//空间复杂度:O(1)
class Solution {
private:
    // 判断一个数字的各位上是否是递增
    bool checkNum(int num) {
        int max = 10;
        while (num) {
            int t = num % 10;
            if (max >= t) max = t;
            else return false;
            num = num / 10;
        }
        return true;
    }
public:
    int monotoneIncreasingDigits(int N) {
        for (int i = N; i > 0; i--) { // 从大到小遍历
            if (checkNum(i)) return i;
        }
        return 0;
    }
};

贪心算法

例如:98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]–,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。
此时是从前向后遍历还是从后向前遍历呢?
从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]
举例,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。
那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299
确定了遍历顺序之后,那么此时局部最优就可以推出全局,找不出反例,试试贪心。

//时间复杂度:O(n),n 为数字长度
//空间复杂度:O(n),需要一个字符串,转化为字符串操作更方便
class Solution {
public:
    int monotoneIncreasingDigits(int N) {
        string strNum = to_string(N);
        // flag用来标记赋值9从哪里开始
        // 设置为这个默认值,为了防止第二个for循环在flag没有被赋值的情况下执行
        int flag = strNum.size();
        for (int i = strNum.size() - 1; i > 0; i--) {
            if (strNum[i - 1] > strNum[i] ) {
                flag = i;
                strNum[i - 1]--;
            }
        }
        for (int i = flag; i < strNum.size(); i++) {
            strNum[i] = '9';
        }
        return stoi(strNum);
    }
};

总结

本题只要想清楚个例,例如98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]减一,strNum[i]赋值9,这样这个整数就是89。就可以很自然想到对应的贪心解法了。
想到了贪心,还要考虑遍历顺序,只有从后向前遍历才能重复利用上次比较的结果。
最后代码实现的时候,也需要一些技巧,例如用一个flag来标记从哪里开始赋值9。

968.监控二叉树

因为头结点放不放摄像头也就省下一个摄像头, 叶子节点放不放摄像头省下了的摄像头数量是指数阶别的。
要从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!
此时,大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。
此时这道题目还有两个难点:

  1. 二叉树的遍历
  2. 如何隔两个节点放一个摄像头

确定遍历顺序

可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了

int traversal(TreeNode* cur) {

    // 空节点,该节点有覆盖
    if (终止条件) return ;

    int left = traversal(cur->left);    // 左
    int right = traversal(cur->right);  // 右

    逻辑处理                            // 中
    return ;
}

如何隔两个节点放一个摄像头来看看这个状态应该如何转移,先来看看每个节点可能有几种状态:

状态有如下三种:

  • 该节点无覆盖
  • 本节点有摄像头
  • 本节点有覆盖

我们分别有三个数字来表示:

  • 0:该节点无覆盖
  • 1:本节点有摄像头
  • 2:本节点有覆盖

空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了

递归的终止条件应该是遇到了空节点,此时应该返回2(有覆盖)

// 空节点,该节点有覆盖
if (cur == NULL) return 2;

单层逻辑处理

主要有如下四类情况:

  • 情况1:左右节点都有覆盖

左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。
image.png

// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
  • 情况2:左右节点至少有一个无覆盖的情况

如果是以下情况,则中间节点(父节点)应该放摄像头:

  • left == 0 && right == 0 左右节点无覆盖
  • left == 1 && right == 0 左节点有摄像头,右节点无覆盖
  • left == 0 && right == 1 左节点无覆盖,右节点摄像头
  • left == 0 && right == 2 左节点无覆盖,右节点覆盖
  • left == 2 && right == 0 左节点覆盖,右节点无覆盖

这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。
此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。

if (left == 0 || right == 0) {
    result++;
    return 1;
}
  • 情况3:左右节点至少有一个有摄像头

如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)

  • left == 1 && right == 2 左节点有摄像头,右节点有覆盖
  • left == 2 && right == 1 左节点有覆盖,右节点有摄像头
  • left == 1 && right == 1 左右节点都有摄像头
if (left == 1 || right == 1) return 2;

从这个代码中,可以看出,如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了image.png
情况4:头结点没有覆盖
以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况
image.png

int minCameraCover(TreeNode* root) {
    result = 0;
    if (traversal(root) == 0) { // root 无覆盖
        result++;
    }
    return result;
}

整体代码

// 版本一
class Solution {
private:
    int result;
    int traversal(TreeNode* cur) {

        // 空节点,该节点有覆盖
        if (cur == NULL) return 2;

        int left = traversal(cur->left);    // 左
        int right = traversal(cur->right);  // 右

        // 情况1
        // 左右节点都有覆盖
        if (left == 2 && right == 2) return 0;

        // 情况2
        // left == 0 && right == 0 左右节点无覆盖
        // left == 1 && right == 0 左节点有摄像头,右节点无覆盖
        // left == 0 && right == 1 左节点有无覆盖,右节点摄像头
        // left == 0 && right == 2 左节点无覆盖,右节点覆盖
        // left == 2 && right == 0 左节点覆盖,右节点无覆盖
        if (left == 0 || right == 0) {
            result++;
            return 1;
        }

        // 情况3
        // left == 1 && right == 2 左节点有摄像头,右节点有覆盖
        // left == 2 && right == 1 左节点有覆盖,右节点有摄像头
        // left == 1 && right == 1 左右节点都有摄像头
        // 其他情况前段代码均已覆盖
        if (left == 1 || right == 1) return 2;

        // 以上代码我没有使用else,主要是为了把各个分支条件展现出来,这样代码有助于读者理解
        // 这个 return -1 逻辑不会走到这里。
        return -1;
    }

public:
    int minCameraCover(TreeNode* root) {
        result = 0;
        // 情况4
        if (traversal(root) == 0) { // root 无覆盖
            result++;
        }
        return result;
    }
};

精简之后

// 版本二
//时间复杂度: O(n),需要遍历二叉树上的每个节点
//空间复杂度: O(n)
class Solution {
private:
    int result;
    int traversal(TreeNode* cur) {
        if (cur == NULL) return 2;
        int left = traversal(cur->left);    // 左
        int right = traversal(cur->right);  // 右
        if (left == 2 && right == 2) return 0;
        else if (left == 0 || right == 0) {
            result++;
            return 1;
        } else return 2;
    }
public:
    int minCameraCover(TreeNode* root) {
        result = 0;
        if (traversal(root) == 0) { // root 无覆盖
            result++;
        }
        return result;
    }
};
风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。