您现在的位置是:首页 >技术交流 >一.RxJava网站首页技术交流

一.RxJava

汤坤Sunshine 2024-06-17 11:28:01
简介一.RxJava

1.RxJava使用场景

RxJava核心思想

Rx思维:响应式编程,从起点到终点,中途不能断掉,并且可以在中途添加拦截.
生活中的例子:
起点(分发事件,我饿了)->下楼->去餐厅->点餐->终点(吃饭,消费事件)
程序中的例子:
起点(分发事件,点击登录)->登录API->请求服务器->获取响应码->终点(更新UI登录成功,消费事件)

总结:
有一个起点和一个终点,起点开始流向我们的“事件”,把事件流向终点,只不过在流向终点的过程中,可以增加拦截,拦截时可以对"事件进行改变",终点只关心他的上一个拦截.

Retrofit配合RxJava使用

Retrofit是对OkHttp网络请求框架的封装,我们将从OkHttp请求到数据的响应给到RxJava进行处理.

防抖

作用:防止重复操作.

举例1:
防止用户一直去请求获取验证码接口,黑客攻击1s内请求100次获取验证码接口;但是我们可以利用防抖思想,对其进行拦截,让他100次只做第一次处理,甚至一天之内最多只能请求5次获取验证码接口.
举例2:
我们点击某个按钮,可能存在重复点击的情况,我们可以利用RxBinding来防止重复点击做重复网络请求.

代码举例:

//TODO 5s内点击按钮只有第1次生效弹出Toast,超过5s后点击按钮才会第二次弹出Toast
RxView.clicks(findViewById(R.id.tv_fangdou))
      .throttleFirst(5, TimeUnit.SECONDS)//表示5s内只有第一次点击生效
      .subscribe(new Consumer<Object>() {
         @Override
         public void accept(Object o) throws Exception {
            Toast.makeText(UseActivity.this, "5s内只有第1次点击生效了", Toast.LENGTH_SHORT).show();
         }
      });
网络嵌套

先请求主数据,然后在根据主数据中的某个字段去请求子数据.
比如:我们先获取到某个用户的朋友列表,然后根据某个朋友的ID(如:张三)去查询朋友的信息.
解决方案:
可以采用flatMap这种方式去做处理,可以实现多个嵌套的网络请求在同一层级上面展示,不会像多层嵌套那样不易阅读.

doOnNext运用

频繁的在主线程与子线程之间切换来完成我们的业务.
举例:
银行项目存在频繁在主线程与子线程之间切换,可以采用doOnNext这种方式来解决.

2.RxJava模式与原理

标准观察者与RxJava观察者

标准观察者:
一个被观察者(Observable),可以有多个观察者(Observer),被观察者发生改变,所有订阅了他的观察者都能收到这个变化消息.
举例:
移动公司给所有用户发送一条短信,移动公司就作为被观察者,而所有的用户就作为观察者.

RxJava观察者流程:

  • 创建Observable
  • 创建Observer
  • 使用subscribe()订阅

分析RxJava观察者流程时,不按照上面的步骤来:

  1. 查看Observer源码
    • 定义了Observer接口的方法,比如:onSubscribe、onNext、onError、onComplete
    • 然后在使用的时候,直接创建自定义观察者,将new新建的Observer传入作为参数,重写实现方法.
  2. 了解Observable创建过程,分析源码
    • 调用create()方法会创建ObservableCreate对象
    • 将自定义(ObservableOnSubscribe)source资源传入ObservableCreate对象,作为一个参数
  3. 了解subscribe订阅过程,分析源码
    • 在订阅的过程中,首先执行观察者中onSubscribe方法,然后执行onNext/onError,最后执行onComplete方法
    • subscribe方法传入的参数是观察者Observer,调用者是被观察者Observable,有一个中间层发射器ObservableEmitter
    • 在执行subscribe方法时,最终会调用到Observable的实现类ObservableCreate的subscribeActual方法

标准观察者设计模式和RxJava观察者设计模式比较:

  • 在标准观察者设计模式中,是一个被观察者,对应多个观察者,并且被观察者发出改变通知后,所有的观察者才能观察到;耦合度高.
  • 在RxJava观察者设计模式中,是多个被观察者,一个观察者,并且需要起点和终点在订阅一次后,才发出改变通知,终点观察者才能观察到;耦合度低,也叫发布/订阅模式,也可以叫作观察者模式.

扩展知识:
RxJavaPlugins.setOnObservableAssembly()可以实现Hook,全局监听整个项目RxJava执行了哪些Observable;RxJavaPlugins就是一个用来做全局监听的工具类,里面包含了多种功能.

map变换操作符原理

map是用来做类型转换的,比如:将String类型转换成Integer类型,也可以将一个对象映射成另外一个对象.
代码举例:

.map(new Function<String, Integer>() {//通过map中传入Function,将String转换成Integer类型
   @Override
   public Integer apply(String s) throws Exception {
         //返回Integer类型
         return 9527;
   }
})

洋葱模型:

  1. 观察者(终点):
    new Observer作为参数传入订阅方法subscribe
  2. 订阅(subscribe(observer)):
    • 这个方法中会调用subscribeActual(observer)方法,由于加入了map拦截,所以由map方法返回的ObservableMap对象来调用subscribeActual方法.
    • ObservableMap.subscribeActual(observer)方法中做了哪些事情:
      public void subscribeActual(Observer<? super U> t) {
         //MapObserver作为Observer的包装(封装/包裹),该类持有了Observer成员变量actual
         //通过MapObserver<T, U>对类型进行转换,将T类型转换成U类型
         //这里的source是上一层传递过来的对象,而MapObserver是封装的是下一层的包裹(Observer)t
        source.subscribe(new MapObserver<T, U>(t, function));
      }
      
    • 第一次包装,采用MapObserver进行包装,这里的参数t就是观察者Observer.
  3. map:
    作用:卡片拦截,在被观察者与观察者之间添加拦截,可以进行类型转换.
    流程分析:
    • 该方法返回包装类ObservableMap<T, U>,这个类可以将T类型转换成U类型并返回;
    • 最终体现在map方法参数Function类的apply方法中,将转换后的U类型返回.
  4. map(多重拦截):
    • 对上一次包裹Observer进行再次包装,采用的MapObserver进行包装.这里的参数t就是上一次包装生成的观察者Observer.
    • 最终由Observable的实现类ObservableCreate来调用该方法;
    • ObservableCreate.subscribeActual(observer)方法中做了哪些事情:
      protected void subscribeActual(Observer<? super T> observer) {
         //1.包装观察者,将观察者作为参数传入创建的发射器对象Emitter
         //由于我们做过拦截,所以这里传入的是包装后的Observer
         CreateEmitter<T> parent = new CreateEmitter<T>(observer);
         //2.调用onSubscribe方法,所以这个方法早于我们的执行流程
         observer.onSubscribe(parent);
      
         try {
            //3.自定义source开始订阅,并将发射器作为参数传入;
            //这个方法就会执行到我们自定义ObservableOnSubscribe的subscribe方法,这里就会去拆包裹
            source.subscribe(parent);
         } catch (Throwable ex) {
            Exceptions.throwIfFatal(ex);
            //如果报错走最外层包裹的onError方法
            parent.onError(ex);
         }
      }
      
  5. create:
    创建ObservableCreate对象并返回,并将自定义ObservableOnSubscribe作为source参数传入.
    • 最后一次包装,采用CreateEmitter进行包装,代码如下:
      CreateEmitter<T> parent = new CreateEmitter<T>(observer);
  6. 自定义source:
    在自定义ObservableOnSubscribesubscribe方法中,可以去执行onNext方法.通过查看源码流程走向,调用该方法后,就会依次调用每一个Observable实现类中内部包装类的onNext方法,最终调用到我们通过new创建的Observer中的onNext方法.

总结:

  1. 首先,RxJava的执行流程是从上往下的,依次创建Observable的实现类,最终调用订阅subscribe方法;
  2. 其次,调用完订阅subscribe方法后,就开始从下往上依次对观察者Observer封装包裹.
    说明:(source.subscribe(包装类(observer)),是封装包裹发起者)
    map方法的包装类是MapObserver,返回的实现类是ObservableMap对象;
    create方法的包装类是CreateEmitter,返回的实现类是ObservableCreate对象;
  3. 最后,我们在自定义source(ObservableOnSubscribe)的回调方法subscribe方法中,执行包装类的onNext或onComplete方法时,就会从上往下,依次从外向内开始拆包裹.
    说明:(包装类.onNext和onSubscribe是拆包裹发起者)
    依次执行当前包裹中封装的Observer的onNext或onComplete方法,最终执行到我们自定义Observer的onNext或onComplete方法,至此完成整个流程.

RxJava中map流程图如下:
请添加图片描述

背压

消费的速度跟不上生产的速度时,就存在背压的问题,我们可以采用Flowable替换Observable来解决背压的问题.

3.RxJava原理与自定义操作符

线程切换原理
  • subscribeOn() 给上面的代码分配线程
    Schedulers.io()最终会通过线程池来进行管理,因此后面执行的任务都是在子线程中进行.
    执行步骤:(Schedulers.io() == IoScheduler(持有线程池))
    • Schedulers.io()->(Scheduler)Schedulers.IO->new IOTask()->IOTask.run()->IoHolder.DEFAULT->new IoScheduler()->IoScheduler.start()->new CachedWorkerPool ->CachedWorkerPool类持有线程池变量:ScheduledExecutorService evictorService
      //构造函数中将线程池变量evictor赋值给成员变量evictorService
      CachedWorkerPool(long keepAliveTime, TimeUnit unit, ThreadFactory threadFactory) {
               //省略无关代码
               ScheduledExecutorService evictor = null;
               if (unit != null) {
                  evictor = Executors.newScheduledThreadPool(1, EVICTOR_THREAD_FACTORY);
               }
               //创建线程池并赋值给evictorService成员变量
               evictorService = evictor;
         }
      
  • observeOn() 给下面的代码分配线程
    AndroidSchedulers.mainThread()最终是通过Handler来完成子线程到主线程的切换,因此后面的代码可以更新UI.
    执行步骤:(AndroidSchedulers.mainThread() == HandlerScheduler(handler))
    • AndroidSchedulers.mainThread()->(Scheduler)Schedulers.MAIN_THREAD->MainHolder.DEFAULT->new HandlerScheduler(new Handler(Looper.getMainLooper()));
    • 这里传递了主线程的Looper对象给Handler,以确保代码执行在主线程中.

RxJava中onserveOn(AndroidSchedulers.mainThread())流程图:
在这里插入图片描述

扩展知识

观察者Observer的回调方法中会返回一个Disposable对象,我们在页面销毁的时候,需要判断这个对象Disposable是否销毁dispose了,如果没有销毁需要将其销毁.
这样的目的是为了防止内存泄漏,解决在页面销毁的时候,还在执行后面onNextonComplete的逻辑操作的问题.
代码如下:

//使用结果赋值给一个成员变量,在生命周期结束时销毁他
private Disposable mDisposable;

private void doSomething() {
   disposable = Observable.create((ObservableOnSubscribe<String>) e -> {
      e.onNext("第一步");
      e.onNext("第二步");
      e.onComplete();
   }).subscribe(s -> {

   });
}

@Override
protected void onDestroy() {
   super.onDestroy();

   //结束生命周期销毁disposable
   if (mDisposable != null && !mDisposable.isDisposed()){
      mDisposable.dispose();
   }  
}
自定义RxView操作符

主要是通过自定义Observable继承自Observable,重写subscribeActual(observer)方法,然后在该方法中通过source.subscribe(包装类),将我们封装了下一层Observer包装类传递进来封装包裹;包装类需要实现Disposable,达到可以被中断的目的,同时需要包含下一层包裹Observer变量,以便一层层调用每一层包裹Observer的方法.

总结:

整体实现流程

  1. 通过由上往下一层一层调用Observable的各种方法,创建出Observable的具体实现类.
    比如:通过调用create()方法,会返回ObservableCreate实现类,通过map()方法会返回ObservableMap实现类,通过observeOn()会返回OnservableObserveOn实现类;总之,就是在Observable后面拼接方法名称构成一个对象.
  2. 通过由下往上调用Observable.subscribe(observer)方法封装包裹,接着调用具体实现类中的subscribeActual(observer)方法来完成,最终将封装的包裹通过这种方式传入:
    source.subscribe(new 包装类(observer);
    参数说明:
    source:表示create方法中通过new传入的ObservableOnSubscribe对象
    observer:表示下一层封装的包裹,每一个包裹都是一个包装类,包装类都实现了Observer接口
    subscribe():方法表示ObservableOnSubscribe重写的subscribe(包装类)方法,里面的参数对应每一层的包装类;一般包装类调用onNext方法时,就会调用到包装类中的Observer对象onNext方法,依次达到一层一层往下拆包裹的目的.
  3. 通过由上往下依次调用每个具体实现类.包装类中的onNext方法时,就会直接调用调用observer.onNext方法,这里observer对象就是下一层包裹,因为每一层包裹都实现了Observer接口,以此达到了一层一层往下调用每一层包裹中onNext方法的目的.
风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。