您现在的位置是:首页 >技术杂谈 >代码随想录算法训练营第三十八天 | 动态规划基础流程网站首页技术杂谈

代码随想录算法训练营第三十八天 | 动态规划基础流程

Yirschen 2024-06-17 10:13:33
简介代码随想录算法训练营第三十八天 | 动态规划基础流程

动态规划理论基础

代码随想录 (programmercarl.com)

如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的。

大家知道动规是由前一个状态推导出来的,而贪心是局部直接选最优的,对于刷题来说就够用了。

动态规划的解题步骤

思路过程:第一步怎么得到、第二步怎么得到、第三步怎么得到…

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

一些同学可能想为什么要先确定递推公式,然后在考虑初始化呢?因为一些情况是递推公式决定了dp数组要如何初始化!

动态规划应该如何debug

找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!

做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果

然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。

如果打印出来和自己预先模拟推导是一样的,那么就是自己的递归公式、初始化或者遍历顺序有问题了。

如果和自己预先模拟推导的不一样,那么就是代码实现细节有问题。

这样才是一个完整的思考过程,而不是一旦代码出问题,就毫无头绪的东改改西改改,最后过不了,或者说是稀里糊涂的过了

509. 斐波那契数

文档讲解:代码随想录 (programmercarl.com)

视频讲解:手把手带你入门动态规划 | 对应力扣(leetcode)题号:509.斐波那契数_哔哩哔哩_bilibili

状态:想到递归,没注意到for循环,要根据动态规划的步骤来写。

思路

动规五部曲:

这里我们要用一个一维dp数组来保存递归的结果

  1. 确定dp数组以及下标的含义

    dp[i]的定义为:第i个数的斐波那契数值是dp[i]

  2. 确定递推公式

    题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

  3. dp数组如何初始化

    题目中把如何初始化也直接给我们了

    dp[0] = 0;
    dp[1] = 1;
    
  4. 确定遍历顺序

    从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

  5. 举例推导dp数组

    按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:

    0 1 1 2 3 5 8 13 21 34 55

    如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。

代码

class Solution {
public:
    int fib(int N) {
        if (N <= 1) return N;
        vector<int> dp(N + 1);
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= N; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[N];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

可以发现,我们只需要维护两个数值就可以了,不需要记录整个序列

class Solution {
public:
    int fib(int N) {
        if (N <= 1) return N;
        int dp[2];
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= N; i++) {
            int sum = dp[0] + dp[1];
            dp[0] = dp[1];
            dp[1] = sum;
        }
        return dp[1];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

70. 爬楼梯

文档讲解:代码随想录 (programmercarl.com)

视频讲解:带你学透动态规划-爬楼梯(对应力扣70.爬楼梯)| 动态规划经典入门题目_哔哩哔哩_bilibili

状态:没想出来。

思路

思路过程:第一步怎么得到、第二步怎么得到、第三步怎么得到…

爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。

那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。所以到第三层楼梯的状态可以由第二层楼梯 和 第一层楼梯状态推导出来,那么就可以想到动态规划了。

动规五部曲:

定义一个一维数组来记录不同楼层的状态

  1. 确定dp数组以及下标的含义

    dp[i]: 爬到第i层楼梯,有dp[i]种方法

  2. 确定递推公式

    从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。

    首先是dp[i - 1],到i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。

    还有就是dp[i - 2],到i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。

    那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!所以dp[i] = dp[i - 1] + dp[i - 2] 。

    在推导dp[i]的时候,一定要时刻想着dp[i]的定义,否则容易跑偏。

  3. dp数组如何初始化

    不考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。

  4. 确定遍历顺序

    从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的

  5. 举例推导dp数组

在这里插入图片描述

代码

class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) return n; // 因为下面直接对dp[2]操作了,防止空指针
        vector<int> dp(n + 1);
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) { // 注意i是从3开始的
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

可以,优化一下空间复杂度,代码如下:

class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) return n;
        int dp[3];
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) {
            int sum = dp[1] + dp[2];
            dp[1] = dp[2];
            dp[2] = sum;
        }
        return dp[2];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

746. 使用最小花费爬楼梯

文档讲解:代码随想录 (programmercarl.com)

视频讲解:动态规划开更了!| LeetCode:746. 使用最小花费爬楼梯_哔哩哔哩_bilibili

状态:能直接做出来。

思路

  1. 确定dp数组以及下标的含义

    使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。

    dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]

  2. 确定递推公式

    可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]

    dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

    dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

    那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?

    一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

  3. dp数组如何初始化

    只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。

    新题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 从 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。所以初始化 dp[0] = 0,dp[1] = 0;

  4. 确定遍历顺序

    因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

  5. 举例推导dp数组

    拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:

    在这里插入图片描述

代码

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size() + 1);
        dp[0] = 0; // 默认第一步都是不花费体力的
        dp[1] = 0;
        for (int i = 2; i <= cost.size(); i++) {
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[cost.size()];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

还可以优化空间复杂度,因为dp[i]就是由前两位推出来的,那么也不用dp数组了,C++代码如下:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int dp0 = 0;
        int dp1 = 0;
        for (int i = 2; i <= cost.size(); i++) {
            int dpi = min(dp1 + cost[i - 1], dp0 + cost[i - 2]);
            dp0 = dp1; // 记录一下前两位
            dp1 = dpi;
        }
        return dp1;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)
风语者!平时喜欢研究各种技术,目前在从事后端开发工作,热爱生活、热爱工作。